
Order Number IPC-16A/927

jyjiy Publication Number 4200127X

Y^W Preliminary
NATIONAL

The PACE Microprocessor

A Logic Designer's Guide
to Program Equivalents

of TTL Functions

MARCH 1976

National Semiconductor Corporation

2900 Semiconductor Drive

Santa Clara, California 95051

Manufactured under one or more of the following U.S. patents: 3083262, 3189758, 3231797, 3303356, 3317671, 3323071, 3381071, 3408542,3421025,3426423,3440498,3518750,3519897,3557431,3560765,
3566218, 3571630, 3575609, 3579059, 3593069, 3597640, 3607469, 3617859, 3631312, 3633052, 36:38131, 3648071, 3651565, 3693248.

National does not assume any responsibility for use of any circuitry described; no circuit patent licenses are implied; and National reserves the right, at any time without notice, to change said circuitry.

© 1976 National Semiconductor Corp. A50M36/Printed in U.S.A.

This handbook is intended for the TTL system designer; it shows him how standard TTL/MSI logic functions are imple-
mented in software for the PACE microprocessor. This handbook in fact describes two classes of hardware simulation
by PACE.

The first class describes the simulation of standard, single-package TTL functions (e.g., a DM74154 4-line to 16-line
decoder/demultiplexer) by software routines (although about half of this class are examples of multiple-package
extensions of standard 4-bit functions to 16 bits), while the second class describes the simulation in software of
multiple, "non-standard," subsystem functions (e.g., a tachometer comprised of four DM7413 binary counters, four
DM7485 comparators, and four DM7123 multiplexers.

With one exception, the second class of simulations - the subsystems - are presented as a single entity. That is, the
routines for the various building blocks of the subsystem are not presented individually; instead, a single software
solution is presented as a cohesive whole in much the same way that a designer (one used to thinking in terms of
software) would approach the problem.

To bridge the gap between the single-package simulations and the subsystem simulations - that is, to show the linking
of the subsystem's building blocks - one subsystem simulation (the digital servo) is presented in both a step-by-step
manner (to show its building-block components, their subroutines, and how these subroutines are meshed to form the
complete subsystem function), and as a final, single routine that is a somewhat more elegant blend of its compo-
nent parts.

All of the simulations have been desk-checked and assembled; in fact, this handbook reproduces the actual "no error"
assembled program print-outs. This is by no means a guarantee that any given simulation will run immediately on any
given PACE system; this no-run phenomenon, common to all software-controlled systems, is explained on page 1-5.

All simulations in this handbook conform to several ground rules. For the standard TTL function simulations, it is

assumed that:

1. Input conditions are set into, and outputs formed in, one of PACE'S four accumulators (ACO, AC1, AC2,or AC3);

2. The result of the operations - the output - is left in an accumulator (i.e., transfers to and from memory or
peripherals are not shown); and,

3. The interrupt, flag, and jump-condition capabilities of the PACE microprocessor are not used.

For subsystem simulations, the first two rules (nos. 1 and 2) remain in effect, but rule no. 3 is voided: interrupts,
flags, and jump conditions are exploited.

Note that for the TTL counter simulations we bend (slightly) rule no. 3 so that the carry flag (status register bit 7) is set
to indicate the finish of the count sequence; the simulations, in fact, are written in a way that ensures the carry flag will
be reset by every subroutine call that does not result in completion of the count sequence.

In practice, however, instructions associated with a carry-flag reset may be unnecessary, as such resets are needed only
when the carry

s
flag either is tested following every return to the main program or is automatically included as an input

by a DECA or SUBB instruction following the subroutine.

Where applicable, each DECA or SUBB instruction within any subroutine is preceded by a reset of the carry flag (PFLG
15 instruction); again, this procedure may not be needed in practice if you know that the carry flag is in the reset state
when the subroutine is called by the main program.

The programs in this book have been assembled in relocatable mode, rather than in absolute mode. In relocatable mode,
the starting address of the program is defined when the binary object code (of the assembled program) is loaded into
memory by the loader program; in absolute mode the starting address is defined when the program is assembled.

If an absolute program had been loaded starting at, say, location X'100, but the programmer now wants to load the
program starting at, say, location X'200, he or she must reassemble the program with the new starting address. A relo-
catable program, on the other hand, may be loaded starting at location X'100, X'200, or any other location.

The programmer normally would use an absolute-sector (.ASECT) directive in the program to indicate absolute mode,
or a base-page-sector (.BSECT) or top-page-sector (TSECT) directive to indicate relocatable mode. But since the PACE
assembler initializes in the top-page-sector relocatable mode, a directive is not required.

TABLE of CONTENTS
PREFACE in

CHAPTER 1. A BRIEF INTRODUCTION TO MICROPROCESSING
The Man-Calculator System 1-1

The Classical Computer 1-1

Microprogramming . 1-3

Software and the Microprocessor
, 1-3

The Software Process 1-4

CHAPTER 2. THE PACE INSTRUCTION SET
Introduction 2-1

Data Representation 2-1

Memory Addressing 2-1

Instruction Summary (Table 4) 2-2
Branch Instructions 2-4
Skip Instructions 2-5
Memory Data-Transfer Instructions 2-6
Memory Data-Operate Instructions 2-7
Register Data-Transfer Instructions 2-7
Register Data-Operate Instructions 2-9
Shift and Rotate Instructions 2-9
Miscellaneous Instructions 2-11
Instruction Execution Times (Table 7) 2-12
Programming Examples 2-13

CHAPTER 3. MICROPROCESSOR INS AND OUTS
Putting Data Into PACE 3-1

Taking Data Out of PACE 3-1

Calling a Subroutine 3-1

The Interrupt System 3-2

CHAPTER 4. THE SIMULATIONS
Standard Functions

Quad 2-lnput AMD Gate 4-7
Triple 3-lnput AND Gate 4-8
Dual 4-lnput AND Gate 4-9

Quad 2-lnput OR Gate 4-10
Quad 2-lnput EXCLUSIVE-OR Gate 4-11
Binary Full Adder 4-12
Monostable Multivibrator 4-14
16-Line to 1-Line Multiplexer 4-17
4-Line to 16-Line Decoder/Demultiplexer 4-20
Parity Generator/Checker 4-23
16-Bit Magnitude Comparator , 4-28
BCD Counter 4-31

Binary Counter
, 4-34

Binary-to-BCD Conversion 4-37
BCD-to-Binary Conversion 4-43
Up/Down BCD Counter 4.50
Up/Down Binary Counter 4.53

Subsystems
Digital Servo 4-5g
Digital Tachometer 4-64
Modulo-N Divider 4-69
Real-Time Clock and Interval Timer 4-72
Pseudo-Random Number Generation 4-74
State Sequencer

, 4.76
Switch Bounce Detection 4-84

APPENDICES
A. Glossary A-1
B. Positive Powers of Two A-3
C. Negative Powers of Two A-4
D. The Hexadecimal Number System A-5
E. Negative Hexadecimal Numbers A-8
F. Hexadecimal and Decimal Integer Conversions A-9
G. Hexadecimal and Decimal Fraction Conversions A-10
H. Integer Conversions

, A-1

1

I. Opcode Index of Instructions A-1

2

Chapter 1

A BRIEF INTRODUCTION
TO MICROPROCESSING

CHAPTER 1-A BRIEF INTRODUCTION TO MICROPROCESSING

Today, a computer connotes a machine that, once it is

set up for a specific problem, performs a computation

automatically and without human intervention. The
present use of the term "computer" has a second

connotation—it usually refers to an electronic machine,

although mechanical and electromechanical computers

do exist. Two important factors dictate the intimate

association between computers and electronics: no known
principle other than electronics allows a machine to

attain the speeds now commonplace in both large- and

small-scale computers; and, no other principle permits

comparable design convenience. In particular, digital com-
puters use numbers that are represented by the presence

or absence of a voltage level or pulse on a given signal

line. A single pulse defines one "bit" (short for binary

digit, a base-2 number); a group of pulses considered as

a unit is called a "word", where a word may represent

a computational quantity or a machine directive.

For purposes of illustration, we shall compare two
systems for solving simple mathematical expressions,

both of which are comprised of the classical elements of

a computer: an input/output device, a memory, a control

section, and an arithmetic and logic unit or ALU (the

computational element). The control section, together

with the ALU, is considered to be the central processing

unit (CPU). {See Figure 1)

r -

1

CPU
""I

|

INPUT

ALU <^!=> MEMORY
OUTPUT

i
t i

i .

1

t
i

i
1

1

l__
1

1

^> - DATA

__l
CONTROL

FIGURE 1. Bnsic Elements of a Digital Computer

THE MAN-CALCULATOR

The first system (Figure 2) is comprised of a man and a

calculator. The man's fingers represent the input, his

eyes coupled with the calculator's output represent the

system output, the calculator electronics function as the

ALU, and his brain serves as the memory as well as the

CONTROL LINE
INPUT LINE

control section. Here is the sequence of events that occurs

when our man-calculator solves the problem 6 + 2 = ?

1. Brain accesses first number to be added, a "6";

2. Brain orders hand to depress "6" key;

3. Brain identifies addition operation;

4. Brain orders hand to depress "+" key;

5. Brain accesses second number to be added, a "2";

6. Brain determines that all necessary information has

been provided and signals the ALU to complete

computation by ordering hand to depress "=" key;

7. ALU (calculator) makes computation;

8. ALU displays result on readout;

9. Eyes signal brain, brain recognizes this number as

the result of the specific calculation;

10. Brain stores result, "8", in a location that it appro-

priately identifies to itself to facilitate later recall.

THE CLASSICAL COMPUTER

We shall now develop a classical computer and illustrate

how it might be used to solve the same problem. To
begin, note that the memory (Figure 3) is composed of

storage space for a large number of words; each storage

space is identified by a unique "address". The word
stored at a given address may be either computational

data or a machine directive (such as add, read from

memory, etc.). Two temporary storage registers, each

capable of containing one word, complete the memory.

These registers are designated as "memory address

register" (MAR) and "memory data register" (MDR).

The MAR contains the binary representation of the

address at which information is to be read out of mem-
ory or written (stored) into memory, while the MDR
contains the data being exchanged with memory.

r* ~i

CJ^>|
MAR Hj> STORAGE <^>}

MDR <£=!>

I

I '

I

I MEMORY I

FIGURE 3. Elements of a Memory

Turning to the ALU, Figure 4 shows that this portion of

a computer, in its simplest form, comprises an "adder"

that adds (or performs similar logical operations upon)

two inputs A and B and produces an output at C, and an

"accumulator", which maintains intermediate results of

a computation or numbers for a pending computation.

FIGURE 2. Man + Calculator = Computer FIGURE 4. Arithmetic and Logic Unit

1-1

The remainder of the CPU, the control portion, is

implemented using an "instruction register" (IR), a

"control decoder and sequencer", and a program counter

(PC). These are shown in Figure 5. A machine directive

(instruction) is transferred into the IR and is subse-

quently interpreted by the decoder/sequencer, which

issues the appropriate control pulses to the other com-

puter elements. The PC contains, at any given time, the

address in memory of the next machine directive or

instruction. This counter is normally incremented by a

count of one immediately following the reading of a new
instruction. The PC contents may be replaced by the

contents of a specified memory location if the last

instruction was of the "jump" class. This causes the next

instruction to be read from a program-specified location,

instead of from the next sequential location as is the

general rule.

A

$>

V
CONTROL

DECODER AND
SEQUENCER

<F

CONTROL
LINES

FIGURE 5. Computer Control

Finally, a means of input/output (I/O) is provided by an

"I/O Register", through which data is exchanged with

external (peripheral) devices. (Figure 6.)

INPUT cz
OUTPUT <^I

£>
I/O

REGISTER C A. TO
-*- CPU

FIGURE 6. I/O Register Interface

We have now collected all the basic elements of a

computer; all that remains to do is to interconnect them

into a functioning, automatic processor. Figure 7 shows

such an interconnection, and represents a complete

computer.

The analysis continues with the execution of the same

problem used to illustrate the man-calculator, but some-

what rephrased:

"Read-in a number from the I/O. Store it in

memory location 50. Read-in another number from

the I/O. Add the two numbers together. Store the

result in memory location 60, and halt."

A "program" has been written to execute this task, and

is stored in consecutive memory locations beginning at

100. This program, written in an artificial symbolic

language, is shown in Table 1.

TABLE 1. Sample Program

Memory Location Instruction (Contents)

100 Input to accumulator

101 Store accumulator at 50

102 Input to accumulator

103 Add accum, Loc. 50

Place result in accumulator

104 Store accumulator at 60

105 Halt

FIGURE 7. Simplified CPU and Memory

1-2

Computer States

All computers spend about equal periods of time in one

of two distinct states: "fetch", or "execute". In the

fetch state, the computer reads from memory the next

sequential instruction and places it in the instruction

register (IR). In the execute state, that instruction is

carried out as a series of transfers from one register to

another and as various ALU operations. Table 2 examines

the program shown in Table 1, as it is actually executed,

by specifying the contents of each register at each

machine cycle (time interval) and assuming the computer

is now ready to fetch the first instruction in our program.

All computers (processors, CPU's, etc.) operate in a

similar manner, regardless of their size or intended

purpose, although many variations are possible within

the basic architectural framework. Common variations

include, for example, highly-sophisticated I/O structures

(some of which have direct and/or autonomous commu-
nications with memory), multiple accumulators for pro-

gramming flexibility, index registers that allow a memory
address to be modified by a computed value, multi-level

interrupt capability, and on and on.

MICROPROGRAMMING

One of the most exciting architectural concepts to gain

popularity in the past few years is that of micro-

programmed control. A microprogrammed computer

differs from the classical example in its control-unit

implementation. The classical machine has for its control

unit an assemblage of logic elements (gates, counters,

flip-flops, etc.) interconnected to realize certain com-

binatorial and sequential Boolean equations. On the

other hand, a microprogrammed machine uses the con-

cept of a "computer within a computer." That is, the

control unit has all the functional elements that comprise

a classical computer, including read-only memory (ROM).

The "inner computer", which (generally) is not apparent

to the user, executes the user's program instructions by

executing a series of its own microinstructions, thereby

controlling data transfers and all functions from com-

puted results. And this means that changing the stored

microprogram that generates the control signals alters

the entire complexion of the computer. By altering a few

words stored in the ROM, the computer behaves in an

entirely new fashion — it can execute a completely

different set of instructions, simulate other computers,

tailor itself to a specified application. It is this capability

for "custom-tailoring" that allows a microprogrammed

machine to be optimized for a given usage. By so

extracting the utmost measure of efficiency, a micro-

program-controlled machine is less costly and easier to

adapt to any given situation, no matter how diverse

or demanding.

Software and the Microprocessor

It is possible to program a device that isn't a computer

at all. An operational amplifier, for example, is a circuit

that is basically a multiplier. Something is put in, some-

thing comes out; the op amp performs a linear function.

But this building block can do something other than

multiplication: a capacitor, for example, connected from

the op amp's output to its input, creates a "programmed-

by-wire" integrator.

As it is with the op amp, so it is with the microprocessor.

A microprocessor is a super circuit—a black box with a
1

transfer function that changes in accordance with a set

of commands called a program. Inside the black box

(i.e., on the chip) is a collection of building-block

logic—an assemblage of many logic elements. You can in

fact replace the microprocessor in any system with sets

of random logic on PC boards, but you would have to

change the logic boards on each clock pulse!

Thus, if you know what a flip-flop does you know what

it does inside or outside a microprocessor; an AND gate

ANDs whether it's inside a microprocessor or on a lab

bench. But in a microprocessor literally thousands of

such logic elements are squeezed onto one or two chips.

And this creates a problem: too much information, too

few pins.

TABLE 2. Register Content

MEMORY
NOTES PC ACCUM. MAR MDR I/O REG. IR (R=READ)

(W=WRITE)

STATE

100 ? ? ? ? ? ? ?

Start 100 ? 100 (100) ? (fbo) R Fetch

Input 100 6 100 (1001 6 (100) Execute

101 6 101 (101) ? (101) R Fetch

Store 101 6 50 6 ? (101) W Execute

102 6 102 (102) ? (102) R Fetch

Input 102 2 102 (102) 2 (102) Execute

103 2 103 (103) ? (103) R Fetch

103 2 50 6 ? (103) R Fetch

Add 103 8 50 6 ? (103) Execute

104 8 104 (104) ? (104) R Fetch

Store 104 8 60 8 ? (104) W Execute

105 8 105 (105) ? (105) R Fetch

Halt 105 8 105 (105) ? (105) Execute

1-3

To overcome the pin problem, microprocessor manu-

facturers strap every logic element to every other logic

element through a set of buses that allows mutual,

element-to-element communications. Bus connections

are made through a series of electronic switches; opening

and closing the switches transfers the data through the

microprocessor's maze to produce a control function.

And it is software that sets the switches. System soft-

ware is a set of tools, supplied by the microprocessor

manufacturer, that allows you to construct application

programs—programs that let the microprocessor do

something.

To appreciate what software does for you, consider

an elementary operation such as addition. Get A, get B,

add them together and come out with C. Easy? In

decimal notation, yes. But this trivial problem is not

quite as simple when one speaks in binary. Dealing with

long binary numbers is complex and difficult because

one's and zero's aren't a natural language for Homo
Sapiens. We have problems trying to figure out what's

going on when we look at raw binary; writing it is even

more troublesome.

Can you imagine looking down 14 sheets of printout,

each with 65 lines of binary gibberish, attempting to

determine what you did wrong? Yet this is ultimately

how you program a job on a microprocessor. You have

to write the story of how the processor is to wire itself

From microsecond to microsecond. So all system soft-

ware, the whole range of it that every manufacturer

offers, is aimed at only one thing: to get you from the

stated idea to the working program as painlessly and as

rapidly as possible.

The Software Process

In the construction of application software, you first

evolve a flowchart (Figure 8A) that describes the func-

tions to be performed and their order. (At this stage

your thought processes and activities resemble those of

the random-logic designer.) Once the chart is laid out,

you start to code the program in either a high-level or a

mnemonic-shorthand language that both you and your

system understand. Here you encounter your first piece

of software, the Text or Source Editor (Figure 8B).

Most microprocessor users write on continuous media

(paper tape or cassettes), which do not allow you to get

in and pull out one piece. Thus, corrections on a con-

tinuous source involve making a wholly new source—

a

constant problem and an awfully wasteful task. But

there is a utility program called a Source Editor that

lets you do the entire job with a Teletype® and a

microprocessor Development System. If you make an

error, just tell the Editor what changes to make and it's

done! The Editor helps you massage the source code until

it looks like it's going to work. Then, with the corrected

(?) program in the Editor's memory cells, you push a

button and a paper tape (or whatever) is put into your

hands.

The "whatever" that has just been put into your hands

has one minor, relatively insignificant, but fatal error—the

microprocessor cannot understand a single bit or byte of

it. But do not despair: an electronic Translator (Figure

8C) converts the continuous, source-mnemonic short-

hand into something the microprocessor can understand.

The Translator (Figure 9A) takes the source tape and

gives back three outputs:

The Program Listing—a copy of both the source

and binary object codes;

The Error Listing—a roster of all grammatical, label,

and syntax errors; and,

The Binary Object Code—a paper tape (or what-

ever) with the machine-readable binary translation

of the program.

STARTING THE SOFTWARE DEVELOPMENT LANGUAGE TRANSLATOR

FIGURE 8. The programmer's ideas, expressed in a flowchart, are written out in mnemonic form to serve as Editor inputs. Mew inputs

plus sections of existing programs are combined to form a new Source; this Source is the input to the language Translator.

1-4

DEBUG
COMMANDS

COMPLETING DEVELOPMENT

IB)

FIGURE 9. Translator outputs include: an Error Listing (to serve as Editor inputs on the next pass); a Program Listing; and a tape of

the translated program (the Object Tape). The Object Tape is deposited by the Loader into Read/Write Memory inside the Development

System. Here the new code is run by the DEBUG program according to commands input by you. The code can be modified via terminal

inputs until it runs properly; working code is then dumped from memory. Note that although a workable object tape may exist at this

time, your job is not complete until you edit and retranslate your Source to produce code identical to the working code.

But there are two types of Translators—the Assembler

and its exotic cousin, the Compiler—and there may be

some argument as to which translation device is the more

useful: Should you use an Assembler or a Compiler to

translate the mnemonic source? The difference is in the

mnemonics.

If you happen to have run programs on minicomputers,

then you've been exposed to the so-called "assembly

language" mnemonics: LD means load; JMP means

jump; ST means store; etc. It's the shortest language

(outside of raw binary) used to talk with the processor.

Programming with this shorthand is a bit tricky but an

assembler-type Translator gives you a better feel for the

machine and you can usually pare down the number of

statements necessary to get the message across; and this

saves time and money.

On the other hand, a compiler-type Translator lets you

write in a high-level language that looks like English

(Fortran, etc.). Its statements can easily be read by

someone with no training at all. The Compiler translates

these statements into a series of machine commands that

carry out the desired function with the advantages of

faster programming and a self-documenting program that

you can read directly. But you often pay for this ease

of use: since the Compiler deals with more general state-

ments, it often translates in an inefficient way using

more machine commands than really necessary at that

level. Extra statements consume memory and result in

slower program execution.

So, in retrospect, Compilers cut programming time and

costs, but raise system costs. Assemblers do just the

opposite. Which should you use? Compilers are most

useful to those of you who constantly re-program your

systems and make few versions of each program. Assem-

bler users, on the other hand, will be those of you who

will program the system once, then reproduce it a

thousand or more times; programming costs are amortized

over the production run and in memory savings.

At this point in the writing of a program many of you

will wish that you could forget the whole thing, for there

are programs with one hundred code lines that come out

of the Translator with four hundred errors! But forge on-

ward. Make another pass through the Source Editor (and

another, and another. . .), to correct the errors that the

Translator has spotted. Eventually, you will get your

reward, the sweetest line ever printed on a computer

listing: "ASSEMBLY COMPLETE - NO ERRORS."
Actually, that statement simply means that the Assembler

didn't find any errors. And you soon find out that this

has almost nothing to do with whether or not the pro-

gram will run on a machine. The reason is that the

Assembler, although it helps you weed out logic errors

from the program that you wrote, cannot tell you

whether or not that program does exactly what you

think it's going to do. In other words, there can be (and

very probably will be) logic differences between your

vision (of what's needed to perform a function) and that

of the machine. Such an error may be one as simple as

your forgetting to set a flag at some point; unimportant,

perhaps, to your charting of a problem's solution, but

all-important to the machine for without that bit of

information your program cannot run. But other utility

programs (such as DEBUG) are available to help you

solve such problems.

Now that the Translator has provided you a binary tape

with your program on it, you must somehow get the

program into the machine's memory along with whatever

other software routines your program needs for opera-

tion. The Loader (Figure 9B) does this for you; it reads

your tape into a microprocessor Development System

(Figure 9C), allocates memory space to the program, and

stores the code in the appropriate location. Typically,

several sections of memory are needed for different

functions (executable code, interrupt calls, subroutine

linkages, etc.), and it is up to the Loader to see that

each part of the program is put into the right place.

Loaders are available to load from Teletypes, paper-tape

readers, and, sometimes, high-speed bulk storage devices.

1-5

Once the program is loaded, you cross your fingers and
hit the RUN switch. As we've already said, very probably
nothing will happen.

Now, if you are using random logic and find it doesn't

work, you unplug it, repair any damaged hardware, and
then try to determine what's wrong. With an oscilloscope

on the gates and clocks, you try to see what's happening.
But in the microprocessor only one set of logic exists,

re-wiring itself at the speed of light. If you don't have

any idea what's going on, the oscilloscope can't help you.

What you need is a different type of fault-finding tool.

The tool is a program, called DEBUG, that lets you use a

Teletype as a scope to help you find out what's hap-

pening. DEBUG is loaded into a Development System
first, then your program is entered. You peck away at

the TTY and say, "DEBUG, run my program from here

to there, stop it, and tell me what is in memory." The
TTY rattles and you've got the answer on a printout.

"Show me what is in these accumulators." DEBUG does!

"Show me this, show me that." Done, done. As your
program is stepped through, you'll encounter parts that

don't work. These snags are cajoled and fondled in-

dividually until the whole thing runs—perfectly—and
you have a working object code that represents your
algorithm in ones and zeros.

There is an alternative to the microprocessor debug
section of a Development System. It is called a Simulator,

and it typically runs on a large computer and includes

both debug and simulation. To use it, load the binary

code into the computer, call the Simulator, and then

direct it to exercise the code to find the defects. How-
ever, this approach can only take you part of the way; it

will not isolate timing problems that have to do with

the outside world.

When the Simulator wants an input, it stops and asks

for one. You sit there and peck away at the typewriter,

which is fine if you want to test things that are slow.

But if you wish to test a program that operates, say, a

100-kHz I/O converter, you won't be able to keep up
with it. So the Simulator can only take you so far.

Ultimately you have to return to the hardware prototype

approach, and this is why the microprocessor manu-
facturers have felt it necessary to produce sophisticated

hardware prototyping tools.

We at National believe a Simulator really doesn't help.

We encourage users to take the Development System
itself, put in the actual interfaces to be used, and use

DEBUG to massage the program in real-time and watch
what it does.

1-6

Chapter2
THE PACE INSTRUCTION SET

CHAPTER 2 - THE PACE INSTRUCTION SET

This chapter contains detailed descriptions of the instruc-

tions provided by the PACE microprocessor. The PACE
microprocessor provides a general purpose mix of 45

instructions, which are divided into eight format groups

as follows:

Branch instructions

Skip instructions

Memory data-transfer instructions

Memory data-operate instructions

Register data-transfer instructions

Register data-operate instructions

Shift and rotate instructions

Miscellaneous instructions

Many of the 45 instructions comprising the eight format

groups could be generally classified as falling into one of

three instruction classes:

Memory-reference instructions

Register instructions

Data-transfer instructions

The memory-reference instructions use a flexible mem-
ory addressing scheme that provides three floating

memory pages of 256 words each and one fixed memory

page of 256 words. The register instructions provide a

convenient means of data manipulation without accessing

memory. The data-transfer instructions provide a con-

venient means of moving data among the functional

blocks of the PACE microprocessor system.

In the PACE microprocessor, data is represented in the

twos-complement number system, in which the negative

of a number is formed by complementing each bit and,

then, adding one to the complemented value of the

number. The most-significant bit position indicates the

sign of the number, for positive and 1 for negative.

With a single 16-bit value, the greatest positive number

is X7FFFF or (32767)io,and the most negative number

is X'8000 or (32768) 1Q. When the 8-bit data length is

selected, the largest positive number is X'7F or (127) io,

and the most negative number is X'80 or (128) io-

Both direct and indirect memory addressing instructions

are included in the PACE instruction set. Direct memory

addressing has three available modes: base-page; Program-

Counter (PC) relative; and, indexed. The addressing

mode is specified by the xr field of the instruction as

illustrated in Figure 10.

15|
| | | |10|9|8|7| | | | | | |

OPERATION
(op code)

Index
xr)

DISPLACEMENT
(disp) 3

NS10278

FIGURE 10. Memory-Reference Instruction Format

When the xr field is 00, base-page (page zero) addressi

is specified. Two types of base-page addressing i

available. The type of base-page addressing selected

are

is

determined by the state of the Base-Page Select Signal

(BPS) input. When BPS is low (0), the 16-bit memory

address is formed by setting bits 8 through 15 to zero

and using the 8-bit displacement (disp) field for bits

through 7. Thus, the first 256 words of memory (locations

through 255) can be addressed. When BPS is high (1),

the 16-bit memory address is formed by setting bits 8

through 15 equal to bit 7 of the disp field and using disp

for bits through 7. Thus, the first 128 words (0 through

127) and the last 128 words (X'FF80 through X'FFFF)

of memory can be addressed. The latter technique is

useful for splitting the base page between read/write and

read-only memories or between memory and peripheral

devices. Consequently, base-page addressing provides a

convenient means of accessing data or peripherals.

When the xr field is 01, addressing relative to the PC is

specified. During the PC-relative addressing mode, the

memory address is formed by adding the contents of PC

to the value of the disp field, which is interpreted as a

signed number. The 8-bit disp field is interpreted as a

16-bit value with the bit 7 value used for bits 8 through

15, thereby permitting representation of numbers from

-128 through 127.

When the memory address is formed, the PC already is

incremented and contains an address value that is one

greater than the location of the current instruction.

Thus, memory addresses that can be referenced range

from 127 locations below through 128 locations above

the address of the current instruction.

The indexed (or accumulator-relative) mode of addressing

permits any memory location within the 65,536 word-

address-space to be referenced. The disp field, as in

PC-relative addressing, is interpreted as a signed value

ranging from -128 through 127. The memory address is

formed by adding disp to the contents of either Ac-

cumulator AC2 (when xr = 10) or Accumulator AC3
(when xr = 11). Table 3 presents a summary of the

direct addressing modes.

xr

FIELD

00

01

10

11

TABLE 3. Summary of Direct Addressing Modes

ADDRESSING MODE
EFFECTIVE
ADDRESS

Base-Page EA = disp

Program-Counter-Relative EA = disp + (PC)

AC2-Relative (indexed) EA = disp + (AC2)

AC3-Relative (indexed) EA = disp + (AC3)

Note 1: For base-page addressing, disp is positive and in range of

000 to 255 when BPS is low (0); or disp is signed number in

range of -128 to +127 when BPS is high (1).

Note 2: PC contains value one greater than address of current

instruction.

Note 3: For relative addressing, display range is -128 to +127.

2-1

Indirect addressing consists of first establishing an address

in the same manner as direct addressing (by either the

base-page, PC-relative, or indexed mode). The contents

of the memory location at the selected address then are

used as the operand address.

NOTE: As explained in Chapter 2 of the PACE Users

Manual, the memory addressing modes also are used for

peripheral I/O operations. Address space must be divided

between memory and I/O devices. Chapter 10 of that

manual discusses addressing relevant to assembly lan-

guage programming, and Chapter 7 discusses the address

assignments used in the PACE Microprocessor Develop-

ment System.

A summary of the 45 PACE instructions is provided in

Table 4, which shows the instruction mnemonic, mean-
ing, a symbolic representation of the instruction, the

assembler format, and the instruction format. Table 5
defines the notation and symbols used in Table 4 and
the remainder of this chapter. The notations are pre-

sented in alphabetical order and, then, the symbols are

listed. Upper-case mnemonics refer to fields in the

instruction word. Lower-case mnemonics refer to the

numerical value of the corresponding fields. In cases

where both upper- and lower-case mnemonics are com-
posed of the same letters, only the lower-case mnemonic
is given. The use of lower-case notation designates

variables.

TABLE 4. PACE Instruction Summary

Mnemonic Meaning

1. Branch Instructions

BOC Branch On Condition

JMP Jump
JMP@ Jump Indirect

JSR Jump To Subroutine

JSR@ Jump To Subroutine Indirect

RTS Return from Subroutine

RTI Return from Interrupt

2, Skip Instruct ons

SKNE Skip if Not Equal

SKG Skip if Greater

SKAZ Skip if And is Zero

ISZ Increment and Skip if Zero

DSZ Decrement and Skip if Zero

AISZ Add Immediate, Skip if Zero

3. Memory Data Transfer Instructions

LD Load

LD@ Load Indirect

ST Store

ST@ Store Indirect

LSEX Load With Sign Extended

Memory Data Operate Instructions

AND And
OR Or

ADD Add
SUBB Subtract with Borrow

DECA Decimal Add

Register Data Transfer Instructions

LI Load Immediate

RCPY Register Copy

RXCH Register Exchange

XCHRS Exchange Register and Stack

CFR Copy Flags Into Register

CRF Copy Register Into Flags

PUSH Push Register Onto Stack

PULL Pull Stack Into Register

PUSHF Push Flags Onto Stack

PULLF Pull Stack Into Flags

Register Data Operate Instructions

RADD Register Add
RADC Register Add With Carry

RAND Register And
RXOR Register Exclusive OR
CAI

Operation

IPC) «- (PCI +dispifcc true

(PC) <- EA
(PC) «- (EA)

(STK) <- (PC). (PC) «- EA
(STK) <- (PC), (PC) <- (EA)

(PC) <- (STK) + disp

(PC) «- (STK) + disp, IEN = 1

If (ACr) 4- (EA), (PC) <- (PC) + 1

If (ACO) > (EA), (PC) *- (PCI + 1

If [(ACO) A (EA)] = 0, (PC) <- (PC) + 1

(EA) *~ (EA) + 1, if (EA) = 0, (PC) - (PC) + 1

(EA) «- (EA) - 1, if (EAI=0, (PC) *- (PCI + 1

(ACr) «- (ACr) + disp, if (ACr) = 0, (PC) - (PC) + 1

(ACr) *- (EAI

(ACO) <- ((EA))

(EA) - (ACr)

<(EA)I <- (ACO)

(ACO) <- (EA) bit 7 extended

(ACO) «- (ACO) A (EA)

(ACO) <- (ACO) V (EAI

(ACr) «- (ACr) + (EAI,OV, CY
(ACO) <- (ACO) + ~ (EA) + (CY), OV, CY
(ACO) <- (ACO) +

10 (EA) +
10 (CY), OV, CY

(ACr) «- disp

(ACdr) «- (ACsr)

(ACdr) <- (ACsr), (ACsr) *- (ACdr)

(STK) i- (ACr), (ACr) <- (STK)

(ACr) - (FR)

(FR) - (ACrl

(STK) «- (ACr)

(ACr) <- (STK)

(STK) - (FR)

(FR) «- (STK)

(ACdr) +- (ACdr) + (ACsr), OV, CY
(ACdr) «- (ACdr) t (ACsr) + (CY), OV, CY
(ACdr) *- (ACdr) A (ACsr).

(ACdr) «- (ACdr) V (ACsr)

Assembler Format Instruction Format

Complement and Add Immediate (ACrl < (ACr) + disp

7. Shift And Rotate Instructions

SHL Shift Left

SHR Shift Right

ROL Rotate Left

ROR Rotate Right

8. Miscellaneous Instructions

HALT
SFLG
PFLG

Halt

Set Flag

Pulse Flag

(ACr) «- (ACr) shifted left n places, w/wo link

(ACr) <- (ACr) shifted right n places, w/wo link

(ACr) «- (ACr) rotated left n places, w/wo link

(ACr) *- (ACr) rotated right n places, w/wo link

Halt

(FRI
fc

«- 1

(FR) fc
*" 1,(FR)

fc

BOC
JMP

JMP
JSR

JSR

RTS
RTI

SKNE
SKG
SKAZ
ISZ

DSZ
AISZ

LD
LD
ST

ST

LSEX

AND
OR
ADD
SUBB
DECA

LI

RCPY
RXCH
XCHRS
CFR
CRF
PUSH
PULL
PUSHF
PULLF

RADD sr.dr

RADC sr.dr

RAND sr.dr

RXOR sr.dr

CAI r.disp

SHL
SHR
ROL
ROR

cc.disp

disp (xr)

@disp (xr)

disp (xr)

@disp (xr)

disp

disp

r.disp (xr)

O.disp (xr)

O.disp (xr)

disp (xr)

disp (xr)

r,disp

r.disp (xr)

0,@disp (xr)

r.disp (xr)

0,@disp (xr)

0,disp (xr)

O.disp (xr)

O.disp (xr)

r.disp (xr)

O.disp (xr)

O.disp (xr)

r.disp

sr.dr

sr,dr

r.n.C

r,n,«

r,n,«

r.n.C

1 0| cc disp

1 10 xr disp

10 1 10
10 1

100101
10

I
disp

I

11111

1 1 1 l| r xr | disp
|

10 111
10 1110
10 1 1

10 10 1 1

11110in

1 1 0| r xr| disp
|

10 10
110 1 r

10 110
10 1111

10 10 10 xr
| disp

|

10 10 1

1 1 1 0| r

10 10
10 10

10 10 r disp

10 111 dr sr 1 not used

110 11
111 r ! not used

I

1

000010
1 10
1 10 1

1 1 not used 1

10

110 10 dr
I

sr | not used
I

1110 1

10 10 1

10 110
1110 r

1 disp
I

10 10 r
I

n | C |

10 1 1

10
10 1

HALT
SFLG fc

PFLG fc

o o ol not used

11 fc 1 not used

11 fc

2-2

NOTATION/
SYMBOL

TABLE 5. Notations/Symbols Used in Instruction Descriptions

MEANING

ACr Denotes specific working register (ACO, AC1, AC2, or AC3), where r is number of

accumulator referenced in instruction.

cc Denotes 4-bit condition code value for conditional branch instructions.

CRY I ndlicates Carry Flag is set if carry exists due to instruction (either addition or subtraction)

or reset if no carry exists.

disp Stands for displacement value and represents operand in nonmemory-reference instruction

or address field in memory-reference instruction. Disp is 8-bit, signed twos-complement

number except when base page is referenced; in latter case, disp is unsigned if BPS = 0.

dr Denotes number of destination working register specified in instruction-word field.

Working register is ACO, AC1, AC2, or AC3.

EA Denotes effective address specified by instructions directly, indirectly, or by indexing.

Effective address contents are used during execution of instruction. See Table 3.

fc Denotes number of referenced flag.

NOTE

Refer to Chapter 2, PACE Users Manual, for flag assignments.

FR Denotes Status Flag Register.

I EN Denotes Interrupt Enable Flag,

£ Denotes inclusion of 1-bit Link (LINK) Flag in shift operations.

n Unsigned number indicating number of bit positions to be shifted in shift and rotate

instructions.

OVF Indicates Overflow Flag is set if overflow exists due to instruction (either addition or

subtraction) or is reset if no overflow exists. Overflow occurs if signs of operands are alike

and sign of result is different from operands.

PC Denotes Program Counter. During address formation, PC is incremented by 1 to contain

address 1 greater than that of instruction being executed.

r Denotes number of working register specified in instruction-word field. Working register

is ACO, AC1,AC2, or AC3.

STK Denotes top word of 10-word last-in/first-out stack.

sr Denotes number of source working register specified in instruction-word field. Working

register is ACO, AC1 , AC2, or AC3.

xr When not zero, xr value designates number of register to be used in indexed and relative

memory addressing modes. When zero, base-page addressing is indicated. See Table 3.

() Denotes contents of item within parentheses. (ACr) is read as 'contents of ACr'. (EA) is

read as 'contents of EA'.

[] Denotes 'result of.

~ Indicates logical complement (ones complement) of value on right-hand side of ~.

-* Means 'replaces'.

<- Means 'is replaced by'.

@ Appearing in operand field of instruction, denotes indirect addressing.

+ 10 Modulo 10 addition.

A Denotes AND operation.

V Denotes OR operation.

V Denotes EXCLUSIVE-OR operation.

2-3

The BRANCH INSTRUCTIONS group consists of the

seven following instructions: BOC, JMP, JMP@, JSR,

JSR@, RTI, and RTS.

NOTE: JMP@ and JSR@ are specified to the Assembler

as JMP and JSR with indirection specified by the ad-

dress field.

Six of the seven instructions (excepting BOC) address

memory and peripheral devices, and each is described

as follows:

Name of instruction followed by mnemonic in

parentheses

Binary instruction format

Operation in equation notation

Assembly language instruction format (see "As-

sembler" chapter, PACE Users Manual, for further

information)

Description of operation

BRANCH ON CONDITION (BOC)

15| | |12 111
I

|8 71 I I I I |0

10 cc disp

Operation: (PC)

tion is true.

(PC) + disp (sign extended) if condi-

Format: BOC cc, disp

Description: There are 16 possible condition codes (cc).

The condition codes are listed in Table 6. IF the condi-

tion for branching designated by cc is true, the value of

disp (sign extended from bit 7 through bit 15) is added

to PC and the sum is stored in PC.

NOTE: PC addresses the location following the BOC
when the addition occurs (that is, the branch is relative

to the next instruction after BOC).

The initial contents of PC are lost. Program control is

transferred to the location specified by the contents of

the new PC.

CONDITION
CODE (cc)

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

TABLE 6. Branch Conditions

MNEMONIC

STFL

REQ0

PSIGN

BIT0

BIT1

NREQ0

BIT2

CONTIN

LINK

IEN

CARRY

NSIGN

OVF

JC13

JC14

JC15

CONDITION

Stack full.

(AC0) equal to zero (1).

(AC0) has positive sign (2).

Bit of AC0 true.

Bit 1 of ACOtrue.

(AC0) is nonzero (1)

.

Bit 2 of AC0 is true.

CONTIN (continue) input is true.

LINK is true.

IEN is true.

CARRY is true.

(AC0) has negative sign (2).

OVF is true.

JC13 input is true (3).

JC14 input is true.

JC15 input is true.

Note 1 : If selected data length is 8 bits, only bits through 7 of AC0 are tested.

Note 2: Bit 7 is sign bit (instead of bit 1 5) if selected data length is 8 bits.

Note 3: JC13 is used by PACE Microprocessor Development System and is not accessible during prototyping.

2-4

JUMP (JMP)

15| | | |
|10 9

|
8 7| I I I l°

110 xr disp

Operation: (PC) *- EA

Format: JMP disp (xr)

Description: The effective address EA replaces the con-

tents of PC. The next instruction is fetched from the

location designated by the new contents of PC.

JUMP INDIRECT (JMP@)

16| I I I
|10

10 1 10
9 | 8

xr

71 I I I I I IP

disp

Operation: (PC) <- (EA)

Format: JMP@ @disp (xr)

Description: The contents of the effective address replace

the contents of PC. The next instruction is fetched from

the location designated by the new contents of PC.

JUMP TO SUBROUTINE (JSR)

151 I I I |10| 9| 8 1 7 |

10 1 xr disp

Operation: (STK) <~ (PC), (PC) <- EA

Format: JSR disp (xr)

Description: The contents of PC are stored in the top of

the stack. The effective address replaces the contents of

PC. The next instruction is fetched from the location

designated by the new contents of PC.

JUMP TO SUBROUTINE INDIRECT (JSR@)

15| | | | 110 g | 8 71 I I I l°

10 10 1 xr disp

Operation: (STK) «- (PC), (PC) +- (EA)

Format: JSR ©disp (xr)

Description: The contents of PC are stored in the top of

the stack. The contents of the effective address replace

the contents of PC. The next instruction is fetched from

the location designated by the new contents of PC.

RETURN FROM SUBROUTINE (RTS)

151 I I I MO

1

9 |8
Not
Used

71 I I I I 1 10

disp

Operation: (PC) <- (STK) + disp (sign extended)

Format: RTS disp

Description: The contents of PC are replaced by disp

added to the contents pulled from the top of the stack.

Program control is transferred to the location specified

by the new contents of PC.

NOTE: RTS is used primarily to return from subroutines

entered by JSR.

RETURN FROM INTERRUPT (RTI)

15| | | | |10|9|8|7| | | | | | |0

1 1111 Not
Used

disp

Operation: (PC) <- (STK) + disp (sign extended), I EN = 1

Format: RTI disp

Description: The Interrupt Enable Flag (I EN) is set.

The contents of PC are replaced by disp added to the

contents pulled from the top of the stack. Program

control is transferred to the location specified by the

new contents of PC.

NOTE: RTI is used primarily to exit from an interrupt

routine.

Six SKIP INSTRUCTIONS are provided: SKNE, SKG,

SKAZ, AISZ, ISZ, and DSZ.

SKIP IF NOT EQUAL (SKNE)

151 I M2

1111
11|10 9 |

8

xr

71 I I I I I 10

disp

Operation: If (ACr) ¥= (EA), (PC) *- (PC) + 1

Format: SKNE r, disp (xr)

Description: The contents of ACr and the contents of

the effective memory location EA are compared. If the

contents of ACr and the effective memory location EA

are not equal, the next instruction in sequence is skipped.

The contents of ACr and EA are unaltered. If an 8-bit

data length is selected, only the lower 8 bits are compared.

SKIP IF GREATER (SKG)

151 I I I
1101 9 18 1 7

1 | | 1

10 111
±°J

disp

Operation: If (AC0) > (EA), (PC) «- (PC) + 1

Format: SKG 0,disp (xr)

Description: The contents of AC0 and the contents of

the effective memory location EA are compared as

signed numbers. If the contents of AC0 are greater

(more positive) than the contents of EA, the next in-

struction in sequence is skipped. The contents of AC0
and EA are unaltered.

NOTE: The comparison is performed by subtraction.

If an 8-bit data length is selected, only the lower 8 bits

are compared.

2-5

SKIP IF AND IS ZERO (SKAZ)

15
l I I I H0|9|8

|

7| I | | | | |0

10 1110 xr disp

Operation: If [(ACO) A (EA)] =0, (PC) <- (PC) + 1

Format: SKAZ 0,disp (xr)

Description: The contents of ACO and the contents of

the effective memory location EA are ANDed. If the

result equals zero, the next instruction in sequence is

skipped. The contents of ACO and EA are unaltered.

If an 8-bit data length is selected, only the lower 8 bits

are tested.

INCREMENT AND SKIP IF ZERO (ISZ)

15
l I I I HO I 9| 81 7

| I I | | | |0

10 11 disp

Operation: (EA)«-(EA) +1; if (EA) = 0, (PC) *- (PC) + 1

Format: ISZ disp (xr)

Description: The contents of EA are incremented by
one. If the new contents of EA equal zero, the next
instruction in sequence is skipped. If an 8-bit data length

is selected, only the lower 8 bits are tested.

DECREMENT AND SKIP IF ZERO (DSZ)

15
l I I I [10|9|8|7| I I | | | |

10 10 11 disp

Operation: (EA) *- (EA) - 1 ; if (EA) = 0, (PC) «- (PC) + 1

Format: DSZ disp (xr)

Description: The contents of EA are decremented by
one. If the new contents of EA equal zero, the next
instruction in sequence is skipped. If an 8-bit data length

is selected, only the lower 8 bits are tested.

ADD IMMEDIATE, SKIP IF ZERO (AISZ)

15
i i i i no

11110
9

|
8 7 o

disp

Operation: (ACr) *- (ACr) + disp (sign extended). If new
(ACr) = 0, (PC) «- (PC) + 1

Format: AISZ r,disp

Description: The contents of Register ACr are replaced

by the sum of the contents of ACr and disp (sign bit 7

extended through bit 15). The initial contents of ACr
are lost. If the new contents of ACr equal zero, the
contents of PC are incremented by one, thus skipping

the next instruction. The AISZ Instruction always tests

the full 16-bit result independent of the data length

selected.

NOTE: Testing the 16-bit result in conjunction with no

change to the status indicators allows AISZ to be con-

veniently used for modifying 16-bit index values while

working with 8-bit data.

The five MEMORY DATA-TRANSFER INSTRUCTIONS
(LD, LD@, ST, ST@, and LSEX) effect data transfers

between the registers and memory or peripheral devices.

LOAD (LD)

15|
| |12 11|10 9 | 8 7| I I I I I 10

110 r xr disp

Operation: (ACr)«-(EA)

Format: LD r,disp (xr)

Description: The contents of ACr are replaced by the

contents of EA. The initial contents of ACr are lost; the

contents of EA are unaltered.

LOAD INDIRECT (LD@)

15
> I II HO I 1 3 I 7

| I I | | | |0

10 10 disp

Operation: (ACO) •*- ((EA))

Format: LD 0,@disp (xr)

Description: The contents of ACO are replaced indirectly

by the contents of EA. The initial contents of ACO are

lost; the contents of EA and the location that designates

EA are unaltered.

STORE (ST)

15| | |12 11|10 9 | 8 7| I I I I I 10

110 1 r xr disp

Operation: (EA) «- (ACr)

Format: ST r,disp (xr)

Description: The contents of EA are replaced by the

contents of ACr. The initial contents of EA are lost;

the contents of ACr are unaltered.

STORE INDIRECT (ST@)

15
l I I I |10

|

9|8|7| I I I I I 10

10 110 xr disp

Operation: ((EA)) «- (ACO)

Format: ST 0,@disp (xr)

Description: The contents of EA are replaced indirectly

by the contents of ACO. The initial contents of EA are

lost; the contents of ACO and the location that designates

EA are unaltered.

2-6

LOAD WITH SIGN EXTENDED (LSEX) Operation: (ACr) <- (ACr) + (EA), OVF, CRY

15| | | | |10 9 | 8 71 I I I |0

10 1111 xr disp

Operation: (ACO) +- (EA) (sign extended)

Format: LSEX 0,disp (xr)

Description: The contents of ACO are replaced by the

contents of EA with bit 7 extended through bits 8

through 15. The initial contents of ACO are lost; the

contents of EA are unaltered.

NOTE: The LSEX Instruction allows 8-bit arithmetic

data to be loaded from an 8-bit data memory or periph-

eral device register and to be operated on as 16-bit

arithmetic data.

The five MEMORY DATA-OPERATE INSTRUCTIONS
(AND, OR, ADD, DECA, and SUBB) provide the

memory-register operations.

AND (AND)

15|
| | | |10 9

|
8 7|

I I I I |0

10 10 10 xr disp

Operation: (ACO) «- (ACO) A (EA)

Format: AND 0,disp (xr)

Description: The contents of Accumulator ACO and the

contents of the effective memory location EA are

ANDed, and the result is stored in ACO. The initial con-

tents of ACO are lost, and the contents of EA are

unaltered.

OR (OR)

Format: ADD r,disp (xr)

Description: The contents of ACr are added algebraically

to the contents of the effective memory location EA.

The sum is stored in ACr, and the contents of EA are

unaltered. The initial contents of ACr are lost. The Over-

flow or Carry Flag is set if overflow or carry occurs,

respectively; otherwise the Overflow and Carry Flags

are cleared.

SUBTRACT WITH BORROW (SUBB)

15|
| | | |10 9 |8 71 I I I |0

10 10 xr disp

Operation: (ACO)

CRY
(ACO) + ~ (EA) + (CRY), OVF,

Format: SUBB 0,disp (xr)

Description: The contents of ACO are added to the

complement of the effective memory location EA and

the carry. The result is stored in ACO, and the contents

of EA are unaltered. The initial contents of ACO are

lost. The Carry and Overflow Flags are set according to

the result of the operation.

NOTE: The carry input should be set true for single-

word operations and serves as a borrow for multiple-word

operations.

DECIMAL ADD (DECA)

151 i i i
no 9| 8 7| I I I l°

10 10 xr disp

Operation: (ACO)

CRY
(ACO) +

1
(EA) + 10 (CRY),OVF,

15| | | | |10 9 | 8 71 I I I l°

1 10 1 xr disp

Operation: (ACO) «- (ACO) A (EA)

Format: OR 0,disp (xr)

Description: The contents of Accumulator ACO and thei

contents of the effective memory location EA are ORed
inclusively. The result is stored in ACO. The initial

contents of ACO are lost, and the contents of EA are

unaltered.

Format: DECA 0,disp (xr)

Description: The contents of Register ACO are treated as

a 4-digit number and added modulo 10 (for each digit)

to the contents of memory location EA (treated as a

4-digit number) and the carry. The initial contents of

ACO are lost; the contents of EA are unaltered. The

Carry Flag is set based on a decimal carry output. The

Overflow Flag is set to an arbitrary state.

NOTE: Subtraction may be performed by forming the

tens complement and using the DECA Instruction.

ADD (ADD)

15| | |12 11|10 9
|
8 71 I I I I I

|o

1110 r xr disp

Ten REGISTER DATA-TRANSFER INSTRUCTIONS
are provided as follows: LI, RCPY, RXCH, XCHRS,
CFR, CRF, PUSH, PULL, PUSHF, PULLF. Register

data-transfer instructions effect data transfers among

the registers, flags and stack.

2-7

LOAD IMMEDIATE (LI)

151 i i i no g | 8 71
I I I |0

10 10 r disp

Operation: (ACr) <-disp (sign extended)

Format: LI r,disp

Description: The contents of Accumulator ACr are

replaced by disp with sign bit 7 extended through bit 15.

The initial contents of ACr are lost.

REGISTER COPY (RCPY)

15| | | | |10 9 |8 7|6 5| I I I 10

10 111 dr sr Not Used

Operation: (ACdr) «- (ACsr)

Format: RCPY sr, dr

Description: The contents of the Destination Register

ACdr are replaced by the contents of the Source Register

ACsr. The initial contents of ACdr are lost, and the

initial contents of ACsr are unaltered.

REGISTER EXCHANGE (RXCH)

151 i i i no g |8 7|6 5| I I I |0

110 11 dr sr Not Used

Operation: (ACsr) «- (ACdr), (ACdr) «- (ACsr)

Format: RXCH sr, dr

Description: The contents of Source Register ACsr and
Destination Register ACdr are exchanged.

EXCHANGE REGISTER AND STACK (XCHRS)

15
l I I I l

1
l

9
l

8
|

7
l I I I I I |

Q

111 Not Used

Operation: (STK) «- (ACr), (ACr) <- (STK)

Format: XCHRS r

Description: The contents of the top of the stack and the

register designated by ACr are exchanged.

NOTE: The XCHRS Instruction provides a convenient

means of placing a subroutine return address into an index

register for modification and/or use to pass parameters.

COPY FLAGS TO REGISTER (CFR)

151 i i i no 9|8 71 Mill |0

1 r Not Used

Operation: (ACr) «- (FR)

Format: CFR r

Description: The contents of Accumulator ACr are

replaced by the contents of the Flag Register (FR). The
initial contents of ACr are lost; the contents of FR
are unaltered.

COPY REGISTER TO FLAGS (CRF)

15|
| | | |10 9 |8 7| I I I I I |0

10 r Not Used

Operation: (FR)«-(ACr)

Format: CRF r

Description: The contents of FR are replaced by the

contents of Accumulator ACr. The initial contents of

FR are lost; the contents of ACr are unaltered.

PUSH ONTO STACK (PUSH)

15|
i i i no 9| 8 7| I I I I I |0

1 10 r Not Used

Operation: (STK) <- (ACr)

Format: PUSH r

Description: The stack is pushed by the contents of the

accumulator designated by ACr. Thus, the top of the

stack holds the contents of ACr, and the stack pointer

is incremented by one. The initial contents of ACr are

unaltered.

NOTE: If PUSH causes the stack pointer to go to 10002
(810 ;that is, nine words on stack) the Stack-Full Interrupt

request is set.

PULL FROM STACK (PULL)

151 i i i no 9 | 8 71 Mill |0

1 10 1 r Not Used

Operation: (ACr) «- (STK)

Format: PULL r

Description: The stack is pulled. The contents from the

top of the stack replace the contents of the Accumulator
ACr. The initial contents of ACr are lost. The contents

of the stack pointer are decremented by one.

NOTE: If the stack pointer goes to —1 (that is, no words

left on stack) a Stack-empty Interrupt request is

generated.

2-8

PUSH FLAG REGISTER ONTO STACK (PUSHF)

151 I I I
|10

|
9

| | | | 1 | | | |0

1 1 Not Used

Operation: (STK)<-(FR)

Format: PUSHF

Description: The contents of FR are pushed onto the

stack. The contents of FR are unchanged.

PULL FLAG REGISTER FROM STACK (PULLF)

16| | | | |10 9
| | I I I I I I |0

1 Not Used

Operation: (FR)<-(STK)

Format: PULLF

Description: The contents of FR are replaced by the

contents pulled from the top of the stack. The initial

contents of FR are lost.

The five REGISTER DATA-OPERATE INSTRUC-
TIONS (RADD, RADC, RAND, RXOR, and CAI)

allow modification of register data.

REGISTER ADD (RADD)

151 | | | |10 9 | 8 7|6 5| I I I |0

110 10 dr sr Not Used

Description: The contents of the Destination Register

ACdr are replaced by the sum of the contents of ACdr

and the Source Register ACsr and the carry. The initial

contents of ACdr are lost, and the contents of ACsr are

unaltered. The Overflow and Carry Flags are modified

according to the result.

REGISTER AND (RAND)

15L 110

10 10 1

9
|
8

dr

SI I I I IP

Not Used

Operation: (ACdr) «- (ACdr) V (ACsr)

Format: RAND sr, dr

Description: The contents of the Destination Register

ACdr are replaced by the result of ANDing the contents

of ACdr and the contents of the Source Register ACsr.

The initial contents of ACdr are lost, and the initial

contents of ACsr are unaltered.

REGISTER EXCLUSIVE-OR (RXOR)

15| | | |
|10 9 |8 7|6 5| I I I 10

10 110 dr sr Not Used

Operation: (ACdr) <- (ACdr) -V (ACsr)

Format: RXOR sr, dr

Description: The contents of the Destination Register

ACdr are replaced by the result of exclusively ORing the

contents of ACdr and the contents of the Source Register

ACsr. The initial contents of ACdr are lost, and the

initial contents of ACsr are unaltered.

COMPLEMENT AND ADD IMMEDIATE (CAI)

Operation: (ACdr) <- (ACsr) + (ACdr), OVF, CRY

Format: RADD sr, clr

Description: The contents of the Destination Register

ACdr are replaced by the sum of the contents of ACdr
and the Source Register ACsr. The initial contents of

ACdr are lost, and the contents of ACsr are unaltered.

The Overflow and Carry Flags are modified according to

the result.

REGISTER ADD WITH CARRY (RADC)

15| | | | |10 9 |8 71 I I I
I |0

1110 r disp

Operation: (ACr) < (ACr) + disp (sign extended)

Format: CAI r, disp

Description: The contents of Accumulator ACr are

replaced by the sum of the complement of ACr and disp

(sign bit 7 extended through bit 15). The initial contents

of ACr are lost.

15| | | | |10 9 | 8 7|6 5| I I I |0|
1110 1 dr sr Not Used

NOTE: Values of zero and one in the disp field produce

the ones and twos complement, respectively, of (ACr).

Operation: (ACdr) <- (ACdr) + (ACsr) + (CRY), OVF,

CRY

Format: RADC sr, dr

The four SHIFT AND ROTATE INSTRUCTIONS (SHL,

SHR, ROL, and ROR) are described in the following

paragraphs.

2-9

SHIFT LEFT (SHU

15
l I I I HOI 1

8

I 7
| | | | | M I O

10 10 s.

SHIFT RIGHT (SHR)

15| | | | |10 g |8 7| I I I I |1

10 11 r n e

Operation: (ACr) +- (ACr) shifted left n places, include

LINK if £ = 1, (ACr)8:l5 <- if data length = 8 bits

Operation: (ACr) «- (ACr) shifted right n places, include

LINK if £ = 1, (ACr)8:15 ^ if data length= 8 bits

Format: SHL r, n,£ Format: SHR r, n, fi

Description: The contents of Register ACr are shifted

left n (n = - 127) bit positions. If the selected data

length is 8 bits, then bits 8 through 15 are set to zero.

Data shifted out of the most significant bit for the spec-

ified data length are lost if £ = and are loaded into the

LINK if £ = 1. A schematic representation of the various

SHL Instruction possibilities is shown in Figure 11.

Description: The contents of Register ACr are shifted

right n (n = — 127) bit positions. If the selected data

length is 8 bits, then bits 8 through 15 are set to zero.

Zeroes are shifted into the most significant bit for the

specified data length if £ = 0. The contents of the LINK
are shifted in if £ = 1, and the contents of the LINK are

unchanged. Data shifted out of the least significant bit

are lost. A schematic representation of the various SHR
Instruction possibilities is shown in Figure 12.

SELECT
LINK IF

LOAD IF

« = 1

SET TO
IF BYTE FLAG = 1

15 14 13 12 .11 10 9 8

INPUT4—••

•-^ HIGH ORDER BIT

14 u Uill ig 9

1 1 il l I I

'i <M-

7 6 5 4 I 3 2 1 I

J I ill
1

I I

ROTATE^.
DATA LENGTH
SELECTOR
(BYTE FLAG)

-0'
SH,FT »»<-— SHIFT/ROTATE SELECTION

FIGURE 11. Left Shift and Rotate Instructions

NS10279

SELECT LINK
IFS=1

SET TO
"IF BYTE FLAG = 1

15 14 13 12 ill 10 9 8n 7 6 5 4.3216 4 4 | J I 1 U |

I I I I I D>i

•SHIFT/ROTATE SELECTION NS1D280

FIGURE 12. Right Shift and Rotate Instructions

2-10

ROTATE LEFT (ROD

15|
| | | |10 9

|
8 7| I I I I M

1 r n £

Operation: (ACr) *- (ACr) rotated left n places, include

LINK if £ = 1, (ACr)g
: i5 *- if data length = 8 bits

Format: ROL r, n, £

Description: The contents of Register ACr are rotated

left n (n = - 127) bit positions. If the selected data

length is 8 bits, then bits 8 through 15 are set to zero.

Data shifted out of the most significant bit position for

the specified data length are shifted into the least signi-

ficant bit if £ = 0, and into the LINK if £ = 1, in which

case the least significant bit is loaded from the LINK.

A schematic representation of the various ROL Instruc-

tion possibilities is shown in Figure 11.

ROTATE RIGHT (ROR)

NOTE: CONTINUE must be held at logic one for at

least four clock cycles prior to the transition and must

then be held at logic zero for at least four clock cycles.

SET FLAG (SFLG)

15| | 1
12 111 1 18 7 6| I I I I |0

11 fc 1 Not Used

Operation: (FR)fc
<-1

Format: SFLG fc

Description: The flag, or bit of FR, specified by flag

code fc is set true. All other bits of FR are unaltered.

NOTE: The functions of the bits in the Status Flag

Register are defined in Chapter 2, PACE Users Manual.

15| | | | 110 9
|
8 7|

I I I I

1

10 1 r n £

PULSE FLAG (PFLG)

Operation: (ACr) «- (ACr) rotated right n places, include

LINK if £ = 1. (ACr)gi:l5 <- if data length = 8 bits

Format: ROR r, n,£

Description: The contents of Register ACr are rotated

right n (n = - 127) bit positions. If the selected data

length is 8 bits, then bits 8 through 15 are set to zero.

Data shifted out of the least significant bit are shifted

into the most significant bit for the specified data length

if £ = 0, and into the LINK if £ = 1, in which case the

most significant bit is loaded from the LINK. A schematic

representation of the various ROR Instruction possibil-

ities is shown in Figure 12.

15| | |12 11|
| |8 7 61 I I I I |0

11 fc Not Used

Operation: (FR)fc <- 1, (FR)fc *-0

Format: PFLG fc

Description: The flag (bit fc of FR) is first set true and

then set false (after four clock periods), causing a pulsing

or resetting of the flag, depending on the initial state of

the flag. All other bits of FR are unaffected.

NOTE: Operation code 1000 01 is unused-causes JMP
PC ± disp. Operation code 1011 01 is unused-causes

SKIP if scratch register 1=0.

The three MISCELLANEOUS INSTRUCTIONS are

HALT, SFLG, and PFLG.

HALT (HALT)

151 I I I |10|9 | | I I I I I 1

Not Used

Format: HALT

Description: The processor halts and remains halted until

the CONTINUE jump condition input makes a transition

from logic T to logic '0'.

The formulas for computing the execution times of

PACE instructions are listed in Table 7. The formulas

are presented in terms of machine (microinstruction)

cycles (M) and I/O data-transfer cycle extends (Er for

read and Ew for write). Each machine cycle (M) consists

of four clock cycles. The following example shows the

method of calculating the instruction execution times.

EXAMPLE: The formula (listed in Table 7) for the

execution time of a RADD Instruction is 4M + Er. If the

clock cycle (or period) is 500 nanoseconds and the read

cycle extend is 500 nanoseconds, then: M = 4(0.5jus) =

2;us; Er =0.5jus; therefore: 4M+Er=4(2jus)+0.5jus=8.5jus.

Thus, under the hypothetical clock cycle and read cycle

extend times used, the RADD Instruction requires 8.5

microseconds for execution.

2-11

TABLE 7. Instruction Execution Times

MNEMONIC MEANING EXECUTION TIME FORMULA

BRANCH INSTRUCTIONS

BOC Branch On Condition 5M + Er + 1M if branch

JMP Jump 4M + ER

JMP@> Jump Indirect 4M + 2Er

JSP. Jump to Subroutine 5M + ER

JSR@ Jump to Subroutine Indirect 5M + 2ER

RTS Return from Subroutine 5M + Er

RTI Return from Interrupt 6M + Er

SKIP INSTRUCTIONS

SKNE Skip if Not Equal 5M+2ER + 1Mif skip

SKG Skip if Greater 7M + 2ER + 1Mifskip

SKAZ Skip if AND is Zero 5M + 2ER + 1M if skip

ISZ Increment and Skip if Zero 7M + 2ER + Ew+ 1M if skip

DSZ Decrement and Skip if Zero 7M + 2ER + Ew + 1M if skip

AISZ Add Immediate, Skip if Zero 5M + Er + 1M if skip

MEMORY DATA-TRANSFER INSTRUCTIONS

LD Load 4M + 2ER

LD@ Load Indirect 5M + 3ER

ST Store 4M + Er + Ew

ST@ Store Indirect 4M + 2Er + Ew

LSEX Load with Sign Extended 4M + 2Er

MEMORY DATA-OPERATE INSTRUCTIONS

AND AND 4M + 2Er

OR OR 4M + 2ER

ADD Add 4M + 2ER

SUBB Subtract with Borrow 4M + 2ER

DECA Decimal Add 7M + 2ER

REGISTER DATA-TRANSFER INSTRUCTIONS

LI Load Immediate 4M+ Er

RCPY Register Copy 4M + Er

RXCH Register Exchange 8M + E R

XCHRS Exchange Register and Stack 6M + ER

CFR Copy Flags into Register 4M + ER

CRF Copy Register into Flags 4M + Er

PUSH Push Register onto Stack 4M + Er

PULL Pull Stack into Register 4M + Er

PUSHF Push Flags onto Stack 4M + Er

PULLF Pull Stack into Flags 4M + Er

REGISTER DATA-OPERATE INSTRUCTIONS

RADD Register Add 4M + Er

RADC Register Add with Carry 4M + Er

RAND Register AND 4M + Er

RXOR Register EXCLUSIVE-OR 4M + Er

CAI Complement and Add Immediate 6M + Er

SHIFT AND ROTATE INSTRUCTIONS

SHL Shift Left (5 + 3n) M + Er, n - 1-127; 6M + Er, n =

SHR Shift Right (5 + 3n) M + E R , n = 1-127;6M + Er, n -

ROL Rotate Left (5 + 3n) M + Er, n = 1-127; 6M + Er, n -

ROR Rotate Right (5 + 3n) M + Er, n = 1-127; 6M + Er, n -

MISCELLANEOUS INSTRUCTIONS

HALT Halt

SFLG Set Flag 5M + Er

PFLG Pulse Flag 6M + ER

NOTES: M = Machine cycle time 4 clock periods

n " Number of shifts

Er a Extend time for read cycle

Ew Extend time for write cycle

.

External interrupt response time is 7M + Er plus time to finish current instruction.

2-12

The following paragraphs contain example programs that

demonstrate the use of PACE instructions. Refer to

Chapter 10, PACE Users Manual, for a description of the

program listing format.

The decimal addition program (see Table 8) adds two
16-digit BCD strings that are packed four digits per

word. The two strings to be added are stored in memory
starting at locations STR'I and STR2. The resulting

digit string is stored in memory starting at location STR2.

Representation of negative decimal numbers in tens-

complement form may be desirable for many PACE
applications, since the Decimal-Add Instruction can then

be used directly for signed number additions. The tens-

complement program converts an unsigned BCD number
to a tens-complement negative number representation.

The sign of a tens-complement number can be tested

by using the BOC Instruction with the PSIGN jump
condition to test the most significant word of the

decimal number.

NOTE: Negative numbers have leading nines while posi-

tive numbers have leading zeroes.

The tens-complement program presented in Table 9

converts a 16-digit number packed in four words of

memory beginning at location NUM.

TABLE 8. Decimal Addition Program Example

ADDR1: .WORD STR1 ;Address of addend string

ADDR2: .WORD STR2 ;Address of augend/result string

START: LI R1,4 ;Number digits/4 to AC 1 (loop count)

LD R2,ADDRI ;Load index registers with

LD R3,ADDR2 ; argument addresses

PFLG CY ;Clear Carry Flags

LOOP: LD R0, (R2) ;Addend to ACO

DECA R0,(R3) ; Decimal add with augend

ST R0, (R3) ;Store result

AISZ R2,1 ; Increment index

AISZ R3,1 ; registers

AISZ R1-1 ; Decrement loop count

JMP LOOP ;Add next word

NOTE: Execution time = 155M + 42Er +4Ew = 31 0ms for 500 ns clock.

TABLE 9. Tens-Complement Program Example

ADDR: .WORD NUM ; Decimal string address

CONST: .WORD X'999A ;Constant

START: LI R1,4 ; Loop count to AC1

LD R2.ADDR ;Address to AC2 index register

SFLG CRY ;Set Carry Flag for first loop

LOOP LD R0, CONST ;Constant to ACO

SUBB R0, (R2) ; Complement and add decimal

; number plus carry

ST R0, (R2) ;Store result

PFLG CRY ;Clear carry for subsequent loop

AISZ R2, 1 increment pointer

AISZ R1-1 ;Decrement loop count

JMP LOOP .Repeat loop

2-13

The decimal subtraction program listed in Table 10

performs a decimal subtract by forming the tens comple-

ment and using the Decimal-Add Instruction. The 16-

digit string, starting at location STR2, is subtracted from

the string starting at location STR1

.

Two binary-multiplication program examples are provided

in Table 11. The first program example multiplies the

16-bit value in AC2 by the 16-bit value in ACO and

provides a- 32-bit result in AC1 (high order) and ACO
(low order).

NOTE: Positive numbers of 16-bit magnitude are assumed

(that is, most significant bit is zero).

The second program multiplies the 16-bit value in AC2
by the 16-bit value in ACO and provides a 32-bit result

in ACO (high order) and AC1 (low order).

NOTE: 16-bit magnitude only is assumed.

TABLE 10. Decimal Subtraction Program Example

; Decimal string addresses

;Tens complement constant

;Loop count to AC1

; Decimal addresses to index registers

;Set carry in for L.S. digit tens complement

;Form nines complement of number at STR2

; carry set true to form tens complement

;Decimal add

;Save result

; Increment address

.•Increment address

; Decrement loop count

; Repeat loop

NOTE: Execution time = 1 70M + 50Er + 4E^ - 340ns for 500 ns clock.

ADDR1: .WORD STR1

ADDR2: .WORD STR2

CONST: .WORD X'9999

START: LI R1,4

LD R2.ADDR1

LD R3.ADDR2

SFLG CY

LOOP: LD R0, CONST

SUBB RO, (R3)

DECA RO, (R2)

ST RO, (R3)

AISZ R2,1

AISZ R3,1

AISZ R1-1

JMP LOOP

TABLE 11. Binary-Multiplication Program Examples

START:

LOOP:

SHIFT:

LI R1,0 Xlear result register

LI R3,16 ;Loop count to AC3

CAI R0,0 ;Complement multiplier

BOC BITO, SHIFT ;Test bit zero

RADD R2,R1 ;Add multiplicand to result

PFLG LINK : Clear link

ROR R1.1.1 ;Shift AC1 into link

SHR RO, 1,1 ;Shift link into ACO

AISZ R3.-1 ; Decrement loop count

JMP LOOP ; Repeat loop

NOTE: Execution time- 634M + 114Ep » 1268ms, maximum, for 500 ns clock.

CONST: .WORD X'FFFF

START: LI R1,0

LI R3.16

CAI R0,0

LOOP: RADD R1,R1

RADC R0,R0

BOC CARRY, TEST

RADD R2.R1

SUBB RO, CONST

AISZ R3, -1

JMP LOOP

TEST:

NOTE: Execution time - 474M + 130Er - 948ms, maiximum, for 500 ns clock.

;Constant for double-precision addition

; Clear result register

; Loop count to AC3

;Complement multiplier

;Shift result left into carry

;Shift carry into multiplier and multiplier

; into carry

;Test for add

;Add multiplicand to result

;Add carry to high-order result

.'Decrement loop count

; Repeat loop

2-14

Stack Service Routine

The Stack Service Routine listed in' Table 12 pushes four

words onto, or pulls four words from, the software stack

when the hardware stack is full or empty, respectively.

Thus, successive interrupts are prevented when a push

instruction is followed by a pull instruction; that is,

the Stack Service Routine provides hysteresis.

NOTE: At least one word always should be left on the

hardware stack by the Stack Service Routine to prevent

a Stack-empty Interrupt from occurring after pushing

the software stack. Similarly, only eight words should

be pushed onto the hardware stack to prevent a Stack-

full Interrupt.

The Stack Service Routine does not check for software

stack overflow or underflow.

TABLE 12. Stack Service Routine

1 .TITLE STKINT,
'

SOFTWARE STACK'
2

3

.LOCAL

4 ! STKINT MAINTAINS A SOFTWARE STACK BY EMPTYING AMD FILLING
5 ; THE HARDWARE STACK WHENEVER \ STACK INTERRUPT OCCURS. IT
6

7

; REMOVES OR REPLACES 4 WORDS AT A TIME TO MINIMIZE INTERRUPTS.

8 0000 R0 = REGISTER
9 naai Rl = 1 REGISTER 1

10 0002 P2 = 2 REGISTER 2

11 0000 STFL =
fl STACK FULL CONDITION

12 0001 IENI 1 STACK INT EHA3LE FLAG
13 0000 .ASSCT
14 0032 .-2
15 8002 1400 T .WORD STKINT
16 0000 .TSECT
17 1400 .-.+01480
18
19

20
21 1400 D127 T

: SAVE REGS AND DETERMINE WHETHER STACK POLL OR EMPTY.

STKINTl ST R0,SSAVa SAVE REG
22 1401 052-7 T ST R1.SSAV1 SAVE REG 1

23 1402 D927 T ST R2.SSAV2 SAVE REG 2

24 1403 6400 A PULL R0 FETCH RETURN ADDRESS
25 1404 D126 T ST R8, SRETA SAVE
26 1405 5104 A LI PI,

4

NUMBER OF WORDS TO PROCESS
27 1406 4000 A
28
29
30
31 1407 AD24 T

BOC STFL, SFULL CHECK CONDITION

; STACK EMPTY RESTORE FOUR WORDS.

SFMP: DSZ SSPTR ADJUST STACK POINTER
32 1408 A123 T r,D Pfl.PSSPTR LOAD WORD
33 1409 6000 A PUSH Rl PUSH ONTO HARDWARE STACK
34 140A 79FF A AISZ Rl,-] CHECK IF FINISHED
35 1403 19FB T
36
37
38
39 140C CUE T

IMP SEMP GET NEXT WORD

t RESTORE REGISTERS AMD RETURN FROM INTERRUPT

SRESTs LD R0, SRETA FETCH RETURN ADDRESS
40 1400 6000 A PUSH R0 RESTORE INTO STACK
41 140E C119 T LD R0 , SSAV0 RESTORE REG
42 140F C519 T LD Rl ,SSAV1 RESTORE REG 1

43 1410 C919 T LD P2.SSAV2 RESTORE REG 2

44 1411 3100 A PFLG IENI CLEAR INTERRUPT
45 1412 3180 A SFLG IENI RE-EN'VSLE STACK INT
46 1413 7C09 A
47

RTI RETURN, SET INTERRUPT ENABLE

48
49 • STACK FULL. FIRST SAVE TOP FIVE ELEMENTS OF STACK.

50
51 1414 C91D T SFULL: LD R2,$ADR ADDPESS TO STORE 5 ELEMENTS

52 1415 7901 A AISZ Rl ,1 MUST PROCESS FIVE ELEMENTS

53 1416 6400 A SLP1: PULL R0 FETCH WORD FROM STACK

54 1417 0200 A ST R0, (R2) STORE IN TEMPORARY LOCATION

55 1418 7A01 A AISZ R2,l NEXT TEMPORARY LOCATION

56 1419 79FF A AISZ Rl,-1 CHECK IF FINISHED

57 141A 19FS T IIP SLP1 GET NEXT WORD

58
59 '; NOW PUT BOTTOM FOUR WORDS ON ["0 SOFTWARE STACK

60
61 1418 5104 A LI Rl,4 NUMBER OF WORDS TO REMOVE

62 141C 6400 A SLP2: PULL R0 FETCH WORD FROM STACK

63 1410 B10E T ST R0,»SSPTP STORE IN SOFTWARE STACK

64 141E 8O0D T ISZ SSPTR INCREMENT STACK POINTER

65 141F 79FF A AISZ R1.-1 CHECK IF FINISHED

66 1420 19FB T J MP SLP2 • GET NEXT WORD

67
68 • FINALLY RESTORE TOP 5 WORDS rO BOTTOM OF STACK

69
70 1421 5105 A LI Rl,5 ; NUMBER OF WORDS TO RESTORE

71 1422 7AFF A SLP3: AISZ R2.-1 ! RELOAD STACK IN REVERSE ORDER

72 1423 C200 A LD BU, (R2) t LOAD WORD

73 1424 6000 A PUSH R0 ; PUSH ONTO HARDWARE STACK

74 1425 79FF A AISZ Rl ,-1 ! CHECK IF FINISHED

75 1426 19FB T IMP $LP3 ; GET NEXT WORD

76 1427 19E4 T .IMP SPEKT i
RESTORE REGS AND RETURN

7 7

73 STORAGE NEEDED
79
80 1429 $SAV0: .-. + 1 ; REGISTER B

81 142A SSAV1: .-.+1 ; REGISTER 1

82 142B SSAV2! . = . + 1 ; REGISTER 2

8 3 1 4 2C SRETA: . = .+1 j RETURN ADDRESS

84 142C 1438 T SSPTR: .WORD $END+5 ; ADDRESS OF SOFTWARE STACK

85 1432 SSTAK: .-.+5) TEMPORARY STORAGE FOR TOP 5 WORDS

86 1432 142D T
37
83 0080

SADR: .WORD SSTAK ; ADDRESS OF TEMP STORAGE

SEND: .END

IEN1 0001 A R0 0002 A Rl 0081 A

K2 0002 A STFL 000B A STKINT 1408 T

SAOR 1432 T SEMP 1407 T SEND 1433 T

$FULL 1414 T $LP 1416 T SLP2 141C T

SLP3 1422 T SREST 140C T $RSTA 142B T

SSAV0 1428 T $SAV1 1429 T SSAV2 142A T

SSPTR 142C T SSTAK 142D T

NO ERROR LINES
SOURCE CK.» 3940

2-15

Chapter 3
MICROPROCESSOR INS AND OUTS

CHAPTER 3 - MICROPROCESSOR INS AND OUTS

PUTTING DATA INTO PACE CALLING A SUBROUTINE

The instructions that PACE uses to bring data from

memory to its accumulators are also used to bring data

from peripherals to its; accumulators. Thus, PACE treats

alike both memory and peripherals: a LOAD instruction,

LD, is executed, which copies data from a specified

address into a designated accumulator, as (ACr)<-(EA).

(See page 2-6.)

A LOAD INDIRECT instruction, LD@, can also be used

to transfer data from memory or peripherals into a

PACE accumulator, but only into ACO, as (ACOM(EA)).
(See page 2-6.)

TAKING DATA OUT OF PACE

A subroutine (also called a service routine) is an instruc-

tion sequence that performs a specific task, such as, for

example, reading characters (or data) from the teletype,

then echoing them via print-out on the teletype.

To cause a subroutine to be executed by PACE (or any

processor), the program must jump to the address con-

taining the first instruction of the subroutine. The

address of the first word of the subroutine is called the

"entry point". You can cause the program to move to

an entry point by using the JUMP TO SUBROUTINE,
JSR, instruction or the JUMP TO SUBROUTINE IN-

DIRECT, JSR@, instruction. (Seepage 2-5.) The effective

address of the jump instruction will specify a subroutine's

entry point.

The STORE instruction, ST, is used to transfer data out

of the processor, as (EA)-HACr). (See page 2-6.) Here,

the contents of the designated accumulator are trans-

ferred to the effective address in either a peripheral or

memory.

Again, the STORE INDIRECT instruction, ST@, can be

used to transfer data from ACO to a location in either

a peripheral or memory, as ((EA))<-(AC0). (Seepage 2-6.)

The RETURN FROM SUBROUTINE instruction, RTS,

is used primarily to return from subroutines entered by

JSR. (See page 2-5.)

Subroutines may also be entered via interrupts, and

exited by using the RETURN FROM INTERRUPT
instruction, RTI. (See page 2-5.) Getting into and exiting

from a subroutine is discussed in the text that follows.

PACE < 16-BIT ADDRESS/DATA $
K 3

^>SECTOR "X RAM
ADDRESS ,/ SELECT

READ/WRITE
MEMORY

2%

—

/

SECTOR "X ROM
ADDRESS__y| SELECT

ADDRESS
LATCH

<;
ADDRESS BUS

READONLY
MEMORY

FIGURE 13. PACE Memory Interface

3-1

THE INTERRUPT SYSTEM

The PACE microprocessor provides a six-level priority

interrupt structure. Each level is provided with an

individual Interrupt Enable as shown in Figure 14. A
master Interrupt Enable (I EN) is provided for all five

lower-priority levels at once. Negative true Interrupt

Request inputs are provided to allow several interrupts

to be wire-ORed to each input. When an Interrupt

Request occurs, the associated interrupt request latch

{IR1 through IR5) is set if the corresponding Interrupt

Enable input is true. Since the interrupt request latch

can be set by any pulse exceeding one clock period,

narrow timing or control pulses can be captured. If the

I EN is true, then an interrupt is generated and recognized

after completing the current instruction. During the

interrupt sequence, an address is provided by the output

from the priority encoder. The address is used to access

the interrupt pointer for the highest priority interrupt

request (IRO is highest priority; IR5 is lowest priority).

The interrupt pointers are stored in locations 2 through

7 (see Table 13) for Interrupt Requests 1 through 5 and

0, respectively. The interrupt pointer specifies the

starting address of the Interrupt Service Routine for the

particular interrupt level, except in the case of the Level-

Interrupt (IRO). (See Chapter 4, PACE Users Manual.)

The Level-0 Interrupt is used primarily for Control Panel

implementation. Before Interrupt Service Routine ex-

ecution, the Program Counter contents are pushed onto

the stack and I EN is set low (false). This interrupt

handling requires 14 microseconds (28 clock cycles). The
Interrupt Service Routine may set IEN high (true) after

turning off the Interrupt Enable for the interrupt level

currently being serviced (or resetting the Interrupt Re-

quest). The Interrupt Enable Signals can be set and

reset by the Set Flag (SFLG) and Pulse Flag (PFLG)

Instructions described on page 2-11. If an Interrupt

Enable Flag is set or reset, one more instruction is

executed before the interrupt is enabled or disabled.

The Return From Interrupt (RTI) instruction may also

be used to set IEN true. In this case there is no delay

and a pending interrupt will take effect immediately

after execution of RTI.

Three types of external interrupts are likely to occur in

PACE applications: short-duration (pulse) interrupts;

long-duration resettable interrupts; and nonresettable

interrupts. The short-duration interrupt exists for less

than the interrupt response time and may be caused by

a strobe pulse from a peripheral device or the occurrence

of a high-speed transient condition, a short-duration

interrupt must be latched to be recognized. Interrupts

longer than the clock period are latched by the PACE
interrupt request latches. The Interrupt Service Routine

must reset the interrupt request latch by turning off the

Interrupt Enable for the level being serviced. If the

Interrupt Enable is left off, Interrupt Request pulses

cannot set the interrupt request latch.

Long-duration resettable interrupts last longer than the

interrupt response time and may be reset by the Interrupt

Service Routine. An example is a Buffer-Full Interrupt

by a peripheral device. The Interrupt Service Routine

empties the buffer, removing the interrupt. A long-

duration interrupt is ignored when Interrupt Enable

is low but still generates an interrupt when Interrupt

Enable is set true. In servicing long-duration interrupts,

the interrupt request latch must be cleared after the

interrupt is reset by the Interrupt Service Routine.

IRO
INT
ENBL

TABLE 13. Locations of Interrupt Pointers

LEVEL ZERO IH"

INTERRUPT REQUEST

STACK FULL
UR EMPTY
INTREO-

(NIR3)—£>0—[?

(NIR4)—f>Q—fS

(MR 5)—[>0—Ts

PRIORITY
ENCODER

INTERRUPT
POINTER
ADDRESS

Note: R overrides S input to latches.

FIGURE 14. PACE Interrupt System

INTERRUPT POINTER LOCATION

Interrupt Program 8

Interrupt PC 7

Interrupt 5 6

Interrupt 4 5

Interrupt 3 4

Interrupt 2 3

Interrupt 1 2

Not Assigned 1

Initialization Instruction

3-2

Long-duration nonresettable interrupts last longer than

the interrupt response time and are not reset by the

Interrupt Service Routine. An example of a long-duration

resettable interrupt is a photoelectric cell that detects;

the presence of an item on a conveyor. The signal pro-

duced by the photoelectric cell (or some other sensor)

may last for a significant portion of a second. Setting the

interrupt request latch on the edge of the interrupt is

desirable and may be accomplished using a simple RC
circuit or single-shot to generate a pulse on the edge of

the interrupt.

The interrupt response time for PACE is equal to the

time to finish the current instruction at the time of the

interrupt, plus the time to access the first instruction of

the Interrupt Service Routine. Instruction execution

times are given on page 2-12.

An example of an Interrupt Service Routine for Interrupt

Level 3 is shown in Table 14. Memory location 4 con-

tains the address of the first instruction in the routine-

When a Level-3 Interrupt occurs, the first instruction

preserves the state of the flags on the stack.

NOTE: I EN is set false by the interrupt prior to being

saved on the stack.

The flag data then are loaded into ACO and all bits

which are to be modified are masked out to zero. The
desired bits are then set true by ORing with IESTAT.

If the routine is interruptable, then IE3 is set to zero and

I EN is set to one. The modified status word is then

transferred from ACO to the status register. The actual

servicing of the interrupting device then takes place.

At the end of the routine, the flags are restored and a

return instruction is executed. If the interrupts are to be

reenabled, the RTI Instruction must be used since RTI

sets I EN true and restores the PC from the stack.

NOTE: Status register masking is necessary only when
interrupt enable status is to be modified to allow

higher priority devices to interrupt. Pushing the status

register onto the stack is necessary only if the routine

alters the contents of the status register.

TABLE 14. Interrupt Service Routine Example

ASSEMBLY CODE EXPLANATION

. = 4 Set location counter equal to 4.

.WORD ISERV3 Pointer to service routine.

. = 500 Set location counter equal to 500.

ISERV3: PUSHF Save flags on stack.

CFR ACO Move flags to ACO.

AND ACO, MASK Mask out old Interrupt Enable status.

OR ACO, IESTAT OR in new Interrupt Enable status.

CF*F ACO Store in flag register.

Interrupt Service Routine

INTXIT: PLJLLF Restore flags.

RTI Return to interrupted routine.

MASK: .WORD Mask data

IESTAT: .ViTORD Interrupt Enable Status data

3-3

Chapter4
THE SIMULATIONS

Part 1 : STANDARD FUNCTIONS

^ SSI

00 Quad 2-lnput NAND Gates

DM54/DM74 Connection Diagrams /Gates

B4 A4 Y4 R3 A3 Y3

Y = AB

r^n r^i
2 3 4 5 6 1

7

B1 V1 A2 B2 Y2 GND

5400/7 400(J), (N);54HO0/74HOO(J), (N);

54L00/74L00(J), (N|; 54LS00/74LS00(J),(N),(W);

74S00HN)

¥4 B4 A4 GND B3 A3 V3

14 13 12 11 10

<3 15>

Pi rS
A1 B1 VI Voc Y2 A2 B2

5400/7400(W); 54L00/74L00(W)

01 Quad 2-lnput NAND Gates with Open-Collector Outputs

Y = AB

Vcc Y4

14 13

A4 Y3 B3 A3

11 10

—op ki

At B1 Y2 A2 B2 GND

5401/740KJI, (N); 54LS01/74LS0KJ), (N), (W)

Y4 84 A4 GND B3 A3 Y_3

14 13 12 111 10

Pi r^
A1 B1 Y1 Vcc Y2 A2 82

5401/7401 (W); 54L01/74L01 (W)

Vcc 64 A4 Y4 B3 A3 Y3

1 14 13 1 12 11 JO i B

LfcJ

i i? 3 4 |5 e V

A1 B1 Y1 AJ B2 Y2 GND

54H01/74H01(J),(N)

4-1

<fitf
SSI DM54/DM74 Connection Diagrams/Gates

08 Quad 2-lnput AND Gates

Y = AB

A4 V4 B3 A3

12 11 10 9

LiJ LEJ

i~Pi E>
A1 B1 Y1 A2 B2 Y2 GND

5408/7408(J), (N), (W); 54H08/74H08(J). (N);

54L08/74L08U), (N), (W);

54LS08/74LS08(J), IN), (W)

09 Quad 2-lnput AND Gates with Open-Co Ilector Outputs

Y == AB

VCc B4 A4 V4 B3 A3 Y3

14 13 12 11 10

>

2 3 4 5 6 |7

A1 B1 Y1 A2 12 Y2 GND

rPi E
5409/7409(J(, (N), (W); 54L09/74L09(J), (N), (W);

54LS09/74LS09(J), (N), (W)

10 Triple 3-lnputNAND Gates

Y = ABC

Vcc CI Y1 C3 B3 A3 Y3

|l4 13 12 11 10

a>
fcJ

9n
1 ? 3 4 F> 6 1

7

A1 B1 A2 B2 C2 Y2 GND

5410/7410U), <N);54H10/74H10(J), (N);
54L10/74L10(J), (N); 54LS10/74LS10(J), (N), (W);

74S10(N)

4-2

CI Y3 C3 GND B3 A3 C2

A1 B1

3
3

,4

-<^
6 7

A2 B2

5410/7410(W); 54L10/74L10(W)

^ SSI DM54/DM74 Connection Diagrams/Gates

11 Triple 3-lnput AND Gates

Y- ABC

C1 Y1 C3 B3 A3 V3

S>J

^
2 3 4 B I'

A1 B'l A2 B2 C2 Y2 GND

5411/7411(J>,(N);54H11/74H11U), (N);

54L11/74L1KJ), (N), (W); 54LS11/74LS1KJ), <N), (W)

74S1KN)

12 Triple 3-lnput NAND Gates with Open-Collector Outputs

Y- ABC

Vcc CI V1 C3 B3 A3 YJ

14 13

s>

3 4 5 6

A1 B1 A2 B2 C2 Y2 GND

54LS12/74LS12(J), (N). <W>

13 Dual 4-lnput NANID Schmitt Triggers

Y = ABCD

4-3

V™, D2 C2 NC B2 A2 Y2

12 11 10 9

fe-

^^
A1 B1 NC CI 01 Y1 GND

5413/7413(J),(N),(W);54LS13/74LS13(J),(N),(W)

M SSI

17 Hex Buffers with Open-Collector High-Voltage Outputs

DM54/DM74 Connection Diagrams /Gates

Y = A

A6 V6 AS V5 A4 Y4

4>-" 4>-l 4>-l

r-0— i rO-i rOn

2 3 4 6

VI A2 Y2 A3

5

I'
V3 GND

20 Dual 4-1 nputNAND Gates

5417/7417(J),(N),(W)

Y = ABCD

"cc D2 C2 NC B2 A2

I" 13 12 |11 10 9

=£>

D°j

A1 B1 NC CI D1 Y1
I

7

GND

5420/7420(J),(N);54H20/74H20(J),(N);

54L20/74L20(J),(N);54LS20/74LS20<J),(N),(W);
74S20IN)

01 C1 B1 GND V2 02 C2

14 13 12 111 10

2 3 4

Al Y1 NC Vc,

I

5

NC A2 B2

5420/7420(W); 54L20/74L20(W)

21 Dual 4-1 nput AND Gates

Y = ABCD

C2 NC B2 A2 Y2

12 111 10

s>J

p
NC

F&3
CI 1)1 Y1 GND

54H21/74H21(J),(N);54LS21/74LS21(J),<NUW)

4-4

^ SSI DM54/DM74 Connection Diagrams/Gates

32 Quad 2-lnput OR Gates

Y = A + B

Vcc B4 A4 V4 B3 A3 Y3

11 10 9

lc at hi

1 14 U
J2_

1 2 3 4 5 6 7

1

A1 B1 Y1 A2 B2 ¥2 QUO

5432/7432<J),(N),(W);54L32/74L32(J),(N),(W);
54LS32/74LS32(J),(N),(W)

37 Quad 2-lnput NAND Buffers

Y = AB

Vcc B4

k
A4 Y4 63 A3 Y3

13 12 11 10 B B

A1 B1 Y1 A2 B2 Y2 GND

5437/7437(J),(N),(W);54LS37/74LS37(J),(N),(W)

38 Quad 2-lnput NAND Buffers with Open-Collector Outputs

Vcc B4 A4 Y4 B3 A3 Y3

Y- AB

,4 13 12 11 10 9 8

4>" t"V

6.
3-

6.
>-

1 2 3 4 s 8 '

A1 B1 Y1 A2 B2 Y2 GND

5438/7438(J),(N),(W);54LS38/74LS38(J),(N),(W)

4-5

^ SSI DM54/DM74 Connection Diagraims/Gates

86 Quad 2-lnput EXCLUSIVE-OR Gates

Vcc 84 A4 Y4 B3 A3 V3

5oJ

f>i

5r>J

j>!
1 2 3 4 5 6 17

A1 B1 Yl A2 B2 Y2 GND

5486/7486U), (N), IW);

54LS86/74LS86(J), (N), (W|l; 74S86IN)

TRUTH TABLE

(86, L86, LS86, S86)

INPUTS OUTPUT

YA B

L L L

L H H

H L H

H H L

Y = A©B = AB + AB

L
B4 A4

13 12

55

; y:i B3 A3

11 10 9

cac

PR] 551

A1 B1 Yl Y2 A!! B2 gnd

54L86/74L86(J),(N)

Y4 B4

14 13

1 GND B

12 Ml

I A3 Y3

10 9 8

K3EJ

r

<m
-5O 1

~LP1
12 3 4 5 6 7

Yl A1 B1 Vcc A2 B2 Y2

54L86/74L86(W)

4-6

Quad 2-lnput Gate

ACTIVE PULL-UP AND FUNCTION

The DM7408 active pull-up AND function may be

implemented by PACE: as shown below either by ANDing
the contents of two registers or by ANDing the contents

of register ACO with the contents of a memory location.

The contents of two registers may be ANDed by:

RAND, sr, dr ;Contents (A) of source register (sr)

are ANDed with contents (B) of desti-

nation register (dr). Result (A A B)

replaces initial contents (B) of destina-

tion register; contents of source register

are not altered.

The contents of register ACO may be ANDed with the

contents of a memory location by:

ANDO, disp ;Contents (A) of ACO are ANDed
with contents (B) of memory location

specified by displacement (disp) value.

Result (A A B) replaces initial contents

(A) of ACO; contents of memory loca-

tion are not altered.

The AND function shown above may be changed to a

NAND function by complementing the result as shown

below:

PACE Implementation of DM7408 Active Pull-Up AND Function

CAI r, 00 ;Contents of register (r) are 1's com-

plemented and added to displacement

(disp) value zero to maintain 1's

complement.

OPEN-COLLECTOR AND FUNCTION

The DM7409 open-collector AND function allows the

outputs of several gates to be tied together for input

expansion. This function may be implemented by PACE
as shown below by ANDing the contents of register ACO
with the contents of a memory location, then comple-

menting the result and testing the complemented result

for zero. The contents of register ACO may be comple-

mented and tested for zero by:

CAI 0, 00 ;Contents of ACO are 1's comple-

mented and added to displacement

(disp) value zero to maintain 1's

complement.

BOC 1 , disp ;Fetch next instruction from memory
location specified by displacement

(disp) value if contents of ACO are

zero; fetch next instruction in sequence

if contents of ACO are not zero.

PACE Implementation of DM7409 Open-Collector AND Function

4-7

^ Triple 3-lnput AND Gate

A 3-input AND function may be implemented by PACE
as shown below either by AN Ding the contents of three

registers or by ANDing the contents of register ACO
with the contents of two memory locations.

The contents of three registers may be ANDed by:

RAND sr, dr ;Contents (A) of first source register

(sr) are ANDed with contents (B) of

destination register (dr). Result (A A
B) replaces initial contents (B) of

destination register; contents of first

source register are not altered.

RAND sr, dr ;Contents (C) of second source register

are ANDed with contents (A A B) of

destination register. Result (A A B A C)

replaces initial contents (A A B) of

destination register; contents of second

source register are not altered.

The contents of ACO may be ANDed with the contents

of two memory locations by:

AND 0, disp ;Contents (A) of ACO are ANDed with

contents (B) of memory location speci-

fied by displacement (disp) value. Re-

sult (A A B) replaces initial contents

(A) of ACO; contents of first memory
location are not altered.

AND 0, disp ;Contents (A A B) of ACO are ANDed
with contents (C) of memory location

specified by displacement value. Result

(A A B A C) replaces initial contents

(A A B) of ACO; contents of second

memory location are not altered.

The AND function shown above may be changed to a

NAND function by complementing the result as shown
below:

CAI r, 00 ;Contents of register (r) are 1's com-

plemented and added to displacement

(disp) value zero to maintain 1's

complement.

PACE Implementation of 3-lnput AND Function

4-8

^ Dual 4-lnput AND Gate

A 4-input AND function may be implemented by PACE
as shown below either by ANDing the contents of four

registers or by ANDing the contents of register ACO with

the contents of three memory locations.

The contents of four registers may be ANDed by:

AND 0, disp ;Contents (A) of ACO are ANDed with

contents (B) of memory location speci-

fied by displacement (disp) value. Re-

sult (A A B) replaces initial contents

(A) of ACO; contents of first memory
location are not altered.

RAND sr, dr ;Contents (A) of first source register

(sr) are ANDed with contents (B) of

destination register (dr). Result (A A B)

replaces initial contents (B) of desti-

nation register; contents of first source

register are not altered.

RAND sr, dr ;Contents (C) of second source register

are ANDed with contents (A A B) of

destination register. Result (A A B AC)
replaces initial contents (A A B) of

destination register; contents of second

source register are not altered.

RANDsr, dr ;Contents (D) of third source register

are ANDed with contents (A A B A C)

of destination register. Result (A A B

AC AD) replaces initial contents

(A A B A C) of destination register;

contents of third source register

are not altered.

The contents of register ACO may be ANDed with the

contents of three memory locations by:

AND 0, disp .'Contents (A A B) of ACO are ANDed
with contents (C) of memory location

specified by displacement value. Result

(A A B A C) replaces initial contents

(A A B) of ACO; contents of second

memory location are not altered.

AND 0, disp ;Contents (A A B A C) of ACO are

ANDed with contents (D) of memory

location specified by displacement

value. Result (A A B A C A D) replaces

initial contents (A A B A C) of ACO;

contents of third memory location are

not altered.

The AND function shown above may be changed to a

NAND function by complementing the result as shown

below:

CAI r, 00 ;Contents of register (r) are 1's com-

plemented and added to displacement

(disp) value zero to maintain 1's

complement.

PACE Implementation of Four-Input AND Function

DATA D £
DATA C £
DATA B

fi

DATAAJI

4-9

~H Quad 2-lnput OR Gate

A 2-input OR function may be implemented with PACE
as shown below by ORing the contents of register AGO
with the contents of a memory location.

The OR function shown here may be changed to a

NOR function by complementing the result as shown
below:

The contents of register ACO may be ORed with the CAI r, 00
contents of a memory location by:

OR 0, disp ;Contents (A) of ACO are ORed with

contents (B) of memory location spec-

ified by displacement (disp) value.

Result (A A B) replaces initial contents

(A) of ACO; contents of memory loca-

tion are not altered.

.•Contents of register (r) are 1's com-
plemented and added to displacement

(disp) value zero to maintain Ts
complement.

PACE Implementation of 2-lnput OR Function

4-10

^ Quad 2-lnput EXCLUSIVE-OR Gate

A 2-input EXCLUSIVE-OR function may be imple-

mented by PACE as shown below by exclusively ORing

the contents of two registers.

The contents of two registers may be exclusively ORed
by:

RXORsr, dr ;Contents (A) of source register (sr)

are exclusively ORed with contents (B)

of destination register (dr); result (AV
B) replaces initial contents (B) of desti-

nation register; contents of source

register are not altered.

The OR function shown here may be changed to a NOR
function by complementing the result as shown below:

CAI r, 00 ;Contents of register (r) are 1's com-

plemented and added to displacement

(disp) value zero to maintain 1's

complement.

PACE Implementation of 2-lnput EXCLUSIVE-OR Function

' ~l BIT,

>n>n

m)E>f

|_ DM74B6
|

3t)j7>-L4

I B2

I BO ,

|_ DM7486
t

3
BIT

)G>|4 "iQE^
)n>u -jiDIT^
rr>Ji -niSJE^

A L "M748S
,

4-11

% MSI DM54/DM7483,LS83A,LS283

General Description

These full adders perform the addition of two 4-bit

binary numbers. The sum (2) outputs are provided for

each bit and the resultant carry (C4) is obtained from
the fourth bit. These adders feature full internal look

ahead across all four bits. This provides the system

designer with partial look-ahead performance at the

economy and reduced package count of a ripple-carry

implementation.

The adder logic, including the carry, is implemented in

its true form meaning that the end-around carry can be

accomplished without the need for logic or level inversion.

4-Bit Binary Adders with Fast Carry

Features

Full-carry look-ahead across the four bits

Systems achieve partial look-ahead performance with

the economy of ripple carry

TYPE

TYPICAL ADD TIMES
TWO TWO
8-BIT 16-BIT

WORDS WORDS

TYPICAL POWER
DISSIPATION PER
4-BIT ADDER

83 23 ns 43 ns 290 mW
LS83A 25 ns 45 ns 95 mW
LS283 25 ns 45 ns 95 mW

Connection Diagrams and Truth Table

B4

A4 Z3 A3 B3 E2

16 15 14 13 | 12 11 10 9

1 2 3 4 I 5 6 7 8

B2

5483(J), (W); 7483IJ), (N), (W);

54LS83A/74LS83AIJ), (N), (W)

A2

Vcc B3 A3 Z3 24

,. 15 14 13 12 11 10 9

1 2 3 4 5 6 7 '

B2 A2 £1 A1 B1 CO

S4LS283/74LS283(J), (Nl, (W)

OUTPUT

WHEN WHEN
INPUT C0 = L

--""""^ WHEN
C2 = L

C0 = H
-^""^ WHEN

C2=H
A1 ./' B1 >S A2 ./ VI S^ SI ./' 22./' C2^/ £1 ./' 22^^ C2 ^S'
s<rt>& ^/B3 / M ./B4 y^'ZZ s^t* /^t* /^E3 ./E4 y^GA

L L L L L L L H L L

H L L L H L L L H L

L H L L H L L L H L

H H L L L H L H H L

L L H L L H L H H L

H L H L H H L L L H

L H H L H H L L L H

H H H L L L H H L H
L L L H L H L H H L

H L L H H H L L L H
L H L H H H L L L H

H H L H L L H H L H

L L H H L L H H L H

H L H H H L H L H H

L H H H H L H L H H

H H H H L H H H H H

H = High Level, L = Low Level

Note : Input conditions at A1, B1, A2, B2, and CO are used to determine outputs 21 and £2 and the value
of the internal carry C2. The values at C2, A3, B3, A4, and B4 are then used to determine outputs S3, S4,
and C4.

4-12

M Binary Full Adder

A binary full-adder function (with carry out and overflow)

may be implemented with PACE as shown below by

adding the contents of two registers (with or without

carry in) or by adding the contents of a memory location

to the contents of register ACO (without carry in).

The contents of two registers may be added with carry

in by:

RADDsr, dr

RADC sr, dr ;Contents (A) of source register (sr)

and carry (CRY) flag are added to

contents (B) of destination register (dr).

Result (C) replaces initial contents (B)

of destination register; contents of

source register are not altered. Carry

(CRY) and overflow (OV) flags are set

or reset according to result.

The contents of two registers may be added without

carry in by:

;Contents (A) of source register are

added to contents (B) of destination

register (dr). Result (C) replaces initial

contents (B) of destination register;

contents of source register are not

altered. Carry (CRY) and overflow

(OV) flags are set or reset according

to result.

The contents of a memory location may be added to

the contents of register ACO by:

ADD 0, disp ;Contents (A) of memory location spec-

ified by displacement (disp) value are

added to contents (B) of ACO. Result

(C) replaces initial contents of ACO;
contents of memory location are not

altered. Carry (CRY) and overflow

(OV) flags are set or reset according

to result.

PACE Implementation of Binary Full-Adder Function

CRY FLAG (1AD0 -1)
RADC

INSTRUCTION
ADD, RADD-I-

INSTRUCTIONS

DATAB DATA A

4-13

M SSI DM54/DM74 Connection Diagrams/One Shots

121 One Shots

TRUTH TABLE
VCc NC NC Cext Cext Bint »C

|14 13 112 11 MO

INPUTS OUTPUTS

A1 A2 B Q Q

L X H L H

X L H L H

X X L L H

H H X L H

H I H j~l ~i_r

1 H H J~L "LT

1 i H j~l n_r

L X t J""L "LT
X L t _n_ ~i_r

I

2

NC

I73>©

D

A1 A2 B GND

54121/74121 (J), (N), (W)

12.2 Retriggerable One Shots with Clear

TRUTH TABLE

INPUTS OUTPUTS

CLEAR A1 A2 B1 B2 Q Q

L X X X X L H

X H H X X L H

X X X L X L H

X X X X L L H

X L X H H L H

H L X t H _n_ ~i_r

H L X H t _n_ ~lt

H X L H H L H

H X L t H _n_ ~i_r

H X L H t _n_ "i_r

H H I H H _n_ "i_r

H i I H H _n_ it
H i H H H _n_ ~i_r

t L X H H _n_ "i_r

t X L H H _n_ ~i_r

r ext/
Vcc CEXT NC CEXT NC RIN

,. 3 « 1" 1,0 9 8

R INT

r°L
^~

i i (

5

1

a

•1 2 3 4 5 6 '

AI A2 B1 B2 [LR

54LS122IJ), (W);74LS'I22(J), (N)

123,123A Dual Retriggerable One Shots with Clear

TRUTH TABLE

INPUTS OUTPUTS

A B CLR Q Q

H X H L H

X L H L H

L t H _TL "LT
1 H H _n_ "i_r

X X L L H

BextI
Vcc Cext

1

Cext 1

1

ai a2 CLR 2 B2 A2

1 16 1 15 |,« 13 12 11 10 9

i\ <y

<

1

> S,

J
l3

I

1 2 3 4 e Is |7 |.

P 1 1 1 CL U a 1 C 2 Cext2 Re> t2 B gu

54123/74123U), (N)„ (W);

54L123A/74L123AU), (N), (W);

54LS123/74LS123U), (N), (W)

L

Notes: _TT_ = one high-level pulse, "LJ" = one low-level pulse.

To use the internal timing resistor of 54121/74121 , connect R|NT to ^CC-
An external timing capacitor may be connected between Cext and f^EXT/^EXT (positive).

For accurate repeatable pulse widths, connect an external resistor between ReXt'^EXT anc' VCC w 'tn ^INT open-circuited.

To obtain variable pulse widths, connect external variable resistance between R|NT or ^EXT^EXT an(* Vcc-

4-14

Monostable Multivibrator

HARDWARE SUMMARY AND PROGRAM DESCRIPTION

SUMMARY

The DM74121 is a gated monostable multivibrator

capable of providing a jitter-free output pulse ranging

from 30 ns to 40 seconds in duration. Selection of the

desired pulse width is accomplished by connection of

an external RC network with:

tp (OUT) = CT RTloge2.

NOTE: The timing values specified in the descriptions

that follow are based on a clock period of 500 ns and

an input-output, data-transfer Extend Cycle of 500 ns.

For clock periods and/or Extend Cycles of different

duration, new timing values can be calculated from the

instruction execution time formulas provided in Table 7

(pp. 2-12).

ASSIGNMENTS

The monostable multivibrator function may be imple-

mented with PACE as two separate subroutines that

allow selection of a delay interval ranging from 1 ms to

approximately 18 hours (in 1-ms increments). The

flowchart and program listing that follow assume that

accumulator AC0 is used as an input-data register and

as a working register (for entry of the desired delay in

seconds or milliseconds, and derivation of the correspond-

ing delay loop constant, respectively), and that input/

output assignments are as listed below.

Delay in 1-second increments

DM74121 PACE

Trigger SECOND entry to Delay subroutine

Pulse Width Execution time of Delay subroutine as

selected by decimal value of AC0 con-

tents (for example, a 60-second delay

is selected by loading 6O10 into AC0)

Delay in 1 ms increments

DM74121 PACE

Trigger MILLISECOND entry to Delay sub-

routine

Pulse Width Execution time of Delay subroutine as

selected by decimal value of AC0 con-

tents (for example, a 60 ms delay is

selected by loading 6O10 into AC0)

Delays of less than 1 ms can be achieved by inserting

Jump + 1 (jump to next instruction in sequence) and/or

Shift instructions directly into the main program. Exe-

cution time for the Jump (JMP) + 1 instruction is 8.5ms;

execution time for a Shift Left (SHL) or Shift Right

(SHR) instruction varies according to the number of

shifts performed. A shift of is, in effect, a do-nothing

instruction that is executed in 12.5ms. For shifts of 1 to

127 places, execution time is computed from the follow-

ing formula:

10.5 + 6n ms, where n = number of shifts performed

Thus, a single Jump + 1 instruction can be used to select

the minimum delay of 8.5ms, a single shift instruction

can be used to select a delay of 12.5ms or a delay interval

ranging from 16.5ms to 772.5ms (in 6.0ms increments),

and a combination of Shift and/or Jump + 1 instructions

can be used to fine tune the delay interval over the range

of 8.5ms to 1 ms.

FUNCTIONAL OPERATION

This program is written as two separate subroutines that

select a delay interval ranging from 1 ms to approximately

1 minute (in 1 ms increments), or from 1 second to

approximately 18 hours (in 1 second increments). When
either subroutine is called by the main program, it is

assumed that the desired delay interval has already been

loaded into ACO. The first instruction executed for

either subroutine, therefore, saves the contents of ACO
in memory-location CNTR to free ACO for use as a

working register. ACO is then loaded with the value 51 10
(MSECS subroutine) or 52,63010 (SECS subroutine),

and decremented by one at a 19ms rate to provide either

a 1 ms or 1 second delay cycle. When the contents of

ACO equal zero, the delay value stored in CNTR is

decremented by one and the delay cycle/decrement

CNTR sequence is repeated until the contents of CNTR
equal zero.

Decrementing of ACO at a 19ms rate is accomplished via

an AISZ -1 instruction followed by a JMP, Loop 1

instruction. While ACO is being decremented to zero,

execution times for the AISZ and JMP instructions are

10.5ms and 8.5ms, respectively. Upon detection of ACO =

zero, AISZ instruction-execution time increases to 12.5ms

to provide an automatic skip to the instruction following

the JMP instruction. Thus a DSZ instruction (15.5 or

17.5ms for CNTR > or = 0, respectively) is executed

to decrement the contents of CNTR by one. If the new

value in CNTR is not zero, the JMP instruction (8.5ms

execution time) following the DSZ instruction causes

the subroutine to loop back to the MSECS + 1 or

SECS + 1 address, thereby enabling another delay

cycle/decrement counter sequence. When the contents

of CNTR are subsequently decremented to zero, the

JMP instruction that follows the DSZ instruction is

skipped and an RTS instruction is executed to cause a

return to the main program.

The 1 ms and 1 second delay cycles mentioned above

are approximations that yield a worst case accuracy of

1% or better over the complete range of delay intervals

that can be selected via the subroutine. If greater than

1% accuracy is required for system applications, the

subroutine can be used to establish a time base that is

slightly less than the desired delay interval, then a com-

bination of Jump and/or Shift instructions can be inserted

in the main program to fine tune the delay interval to

the desired final value.

4-15

~H Monostable Multivibrator

FLOWCHARTS

(seconds
) SECONDS routine

I
STORE ACO
IN CNTR

LOAD SECONDS
CONSTANT
INTO ACO

(RETURN
J

(
"

)

Save seconds in counter
STORE ACQ
IN CNTR

19jus loop

Decrement the seconds count

Seconds = 0?

LOAD ms
CONSTANT
INTO ACO

(RETURN
J

ms routine

Save ms in counter

19ms loop

Decrement the ms count

MS = 0?

PROGRAM LISTING

!l * MONOSTABLE MULTIVIBRATOR
2 0000 AC0 =

3
• SECONDS

4 0000 D10E A SECS: ST AC0*CNTR ;SAVE AC0 IN CNTR
!5 0001 C105 A LD AC0>D52630 ;LOAD SECOND CONSTANT
6 0002 78FF A LOOPl: AISZ AC0J-1 ; 19 MICROSEC LOOP
7 0003 19FE A JMP LOOPl •

*

8 0004 AD0A A DSZ CNTR ; NUMBER OF SECS =

9 0005 19FB A JMP SECS+1 ;N0* CONTINUE
1.0 0006 8000 A RTS ;yes.» return
1 1 0007 CD96 A D52630: • WORD 52 630 ;DECIMAL 52630
12 ;mill.isecomds
13 0008 D106 A MSECS: ST AC0/CNTR iSAVE AC0 IN CNTR
14 0009 5033 A LI AC0>51 ;ldad millisec consta
15 000A 78FF A L00P2: AISZ AC0*-1 ; 19 MICROSEC LOOP
1.6 000B 19FE A JMP L00P2 •

3

17 000C AD02 A DSZ CNTR ; NUMBER OF MILL I SECS
18 0000 19FB A JMP MSECS+1 ;no* continue
19 000E 8000 A RTS ;yes* return
80 000F 0000 A CNTR: .WORD ; DELAY COUNTER SAVE W
s;i 0000 • END

WORD

4-16

^ MSI

General Description

These data selectors/multiplexers contain full on-chip
decoding to select the desired data source. The 150
selects one-of-sixteen data sources; the 151 A, LS151,
and S151 select one-of-eight data sources. The 150,
151A, LS151, and S151 have a strobe input which must
be at a low logic level to enable these devices. A high
level at the strobe forces the W output high, and the Y
output (as applicable) low.

The 151A, LS151, and S151 feature complementary
W and Y outputs whereas the 150 has an inverted (W)
output only.

The 151A incorporates address buffers which have
symmetrical propagation delay times through the comple-
mentary paths. This reduces the possibility of transients
occurring at the output(s) due to changes made at the
select inputs, even when the 151A outputs are enabled
(i.e., strobe low).

Connection Diagraims

DATA INPUTS DATA SELECT

Vcc E8 E9 E10 E11 E12 E13 EH E16

1- 23 22 21 20 19 18 17 16 15 14 13

....- ...

1 2 3 4 5 6 7 8 9 10 "1 12

E7 E6 E5 E4 E3I E2 E1 EO STROBE W D GND
« ' OUT DATA

DATA INPUTS SELECT

54150(J>, (F); 74150(J), (N), (F)

DATA INPUTS DATA SELECT

D5 D6 D7

L 15 14 13 12 11 10 9

C
r i

i

1 2 3 4 5 6 7

1

8

D2 00 STROBE GND

DATA INPUTS OUTPUTS

54151A(J), (W); 74151A(J), (N), (W);
54LS151/74LS15KJ), (N), (W); 74S15KN)

DM54/DM74150,151A,LS151,S151

Data Selectors/Multiplexers

Features

150 selects one-of-sixteen data lines

Others select one-of-eight data lines

Performs parallel-to-serial conversion

Permits multiplexing from N lines to one line

Also for use as Boolean function generator

TYPICAL AVERAGE TYPICAL
TYPE PROPAGATION DELAY TIME POWER

DATA INPUT TOW OUTPUT DISSIPATION

150

151A

LS151

S151

11 ns

9 ns

12.5 ns

4.5 ns

200 mW
135 mW
30 mW

225 mW

Truth Tables
54150/74150

INPUTS
OUTPUT

W
SELECT STROBE

SD C B A

X XXX H H

L L L L L E0

L L L H L IT
L L H L L E2

L L H H L E3

L H L L L E4

L H L H L E5

L H H L L E6

L H H H L E7

H L L L L 11

H L L H L E9

H L H L L E10

H L H H L E11

H H L L L El2

H H L H L E13

H H H L L E14

H H H H L E15

54151A/74151A, 54LS151/74LS151,
74S151

INPUTS OUTPUTS

SELECT STROBE

S
Y W

C B A

XXX
L L L

L L H

L H L

L H H

H L L

H L H

H H L

H H H

H

L

L

L

L

L

L

L

L

L H

DO DO

D1 51

D2 D2

D3 D3

D4 D4

D5 D5

D6 D6

D7 D7

H_= High Level, L = Low Level, X = Don't Care

E0, E1 . . . E15 = the complement of the level of the
respective E input

DO, D1 . . . D7 = the level of the respective D input

4-17

ft
16-Line to 1-Line Multiplexer

HARDWARE SUMMARY AND PROGRAM DESCRIPTION

SUMMARY

The DM74150 functions under control of the STROBE
input to provide 16-line to Mine data multiplexing.

While the STROBE is low, the four Data Select inputs

{A, B, C, D) are continuously decoded to route the

appropriate data input (E0 through E15) to the output

(W); when the STROBE is high, decoding is disabled and

the output is held in the high state.

ASSIGNMENTS

The DM74150 multiplexer function may be implemented

with PACE using ACO as an input data register and AC1

as an input/output data register. The flowchart and

program listing that follow assume that the ACO and

AC1 bit positions are assigned as listed below:

INPUTS: OUTPUT:

DM74150 PACE DM74150 PACE

STROBE
A
B

C
D

ACO Bit

ACO Bit 1

ACO Bit 2

ACO Bit 3

ACO Bit 4

W AC1 Bit

E0 AC1 BitO

• •

• •

•

E15

•

AC1 Bit 15

FUNCTIONAL OPERATION

This program is written as a subroutine that performs

16-line to Mine multiplexing. It is assumed that when

the subroutine is called, the main operating program

has already loaded the STROBE and Data Select inputs

into ACO and the Data inputs into AC1. The first step

of the subroutine is to test ACO Bit via a Branch-On-

Condition (BOO instruction. If ACO Bit is high,

AC1 Bit is set high to reflect logical operation of the

DM74150 in response to a high STROBE input, and a

Return From Subroutine (RTS) instruction is executed

to provide a "Multiplexing Disabled" return to the main

operating program.

If ACO Bit is low, AC1 is rotated right while ACO is

decremented by two after each shift until the contents

of ACO are equal to zero. A decrement of two is required

because the ACO STROBE bit is low and the least

significant Data Select Bit (A) is located at ACO bit

position 1. This bit position corresponds to a binary

arithmetic value of 22 . Thus, when the contents of ACO

are equal to zero, the selected data input will have been

rotated to bit position of AC1. Upon detection of

ACO = 0, a Return From Subroutine (RTS) + 1 instruc-

tion is executed to provide a "Multiplexed Data Valid"

return to the main operating program.

FLOWCHART

M0

k LOOP
'

SHIFT AC1
RIGHT 1 BIT

\

DECREMENT
ACO BY 2

„ MO,
'C ac o-ii j:

Strobe high?

Selected data bit is located at bit

position of AC1

Shift AC1 right until selected data

bit is located at bit position

Multiplexed Data Valid return

Set output high

Multiplexing Disabled return

4-18

M
PROGRAM LISTING

16-Line to 1-Line Multiplexer

1
•
9 16 TO 1 MULTIPLEXER

2 0000 AC0 =
3 0001 AC1 ss

1

4 0000 4305 A MUX16: BOC 3* EXIT 1

5 0001 4103 A BOC 1..EXIT2
6 0002 2D02 A LOOP; SHR AC1> 1,0
7 0003 78 FE A AISZ AC0J-2
8 0004 19 FD A JMP LOOP
9 0005 8001 A EXIT2S RTS 1

10 0006 5101 A EXIT1: LI AC1* 1

11 0007 8000 A RTS
12 0000 • END

JEXIT IF STROBE = 1

JEXIT IF AC0 =
J SHI FT AC1 RIGHT 1 BIT
; DECREMENT AC0 BY 2
; CONTINUE TESTING
J MUX RETURN
; SET OUTPUT = NO MUX
iNO MUX RETURN

4-19

% MSI DM54/DM74154,L154A,LS154

4-Line to 16-Line Decoders/Demultiplexers

General Description

Each of these 4-line-to-1 6-line decoders utilizes TTL

circuitry to decode four binary-coded inputs into one

of sixteen mutually exclusive outputs when both the

strobe inputs, G1 and G2, are low. The demultiplexing

function is performed by using the 4 input lines to

address the output line, passing data from one of the

strobe inputs with the other strobe input low. When

either strobe input is high, all outputs are high. These

demultiplexers. are ideally suited for implementing high-

performance memory decoders. All inputs are buffered

and input clamping diodes are provided to minimize

transmission-line effects and thereby simplify system

design.

Features

Decodes 4 binary-coded inputs into one of 16 mutually

exclusive outputs

Performs the demultiplexing function by distributing

data from one input line to any one of 16 outputs

Input clamping diodes simplify system design

High fan-out, low-impedance, totem-pole outputs

TYPE

154

L154A

LS154

TYPICAL

PROPAGATION DELAY

3 LEVELS OF LOGIC STROBE

18 ns19 ns

55 ns

23 ns

45 ns

19 ns

TYPICAL

POWER
DISSIPATION

170 mW
24 mW
45 mW

Connection and Logic Diagrams

Vc

|

INPUTS OUTPUTS

C

24

H B

n

C

22

D

21

G

20

G

19

1

18 17

1

16

12

15

1

14 13

i!) i> i? <> I) i

0--0

{
T-(5 <

r i

5 (D (i (J (J (.)

1

1

2

1

3

1

4

3

s 6

5

7

3

8

7

9

!

10

9 1

11

°, G

1"

54154(J), (F); 74154(J), (N|, (F);

54L154A/74L154AU), (N), (F);

54LS154/74LS154U), (N), (F)

SO-

,H2[>c-hj-o^

,-[>c-£t>^:

:^t>^H>

l
>a
&>"r>i:

Mty^'-
\ty*«

:=|3>us.

!=i^°'

i=iD^-
is|D»»'

=13*

li^y*'
s=i3»-

4-20

4-Line to 16-Line Decoder/Demultiplexer

HARDWARE SUMMARY AND PROGRAM DESCRIPTION

SUMMARY

The DM74154 has six inputs and sixteen outputs. Two
of the inputs, G1 and G2, serve as enable inputs. When
both of these inputs are low, the remaining four inputs

(A, B, C, and D) are decoded to provide a low level

(logic 0) at the appropriate output pin.

ASSIGNMENTS

The DM74154 decoder/demultiplexer function may be

implemented with PACE, using ACO as an input/output

data register and AC1 as a working data register. The
PACE decoder/demultiplexer flowchart and program

listing that follow assume that the ACO bit positions are

assigned as listed below:

INPUTS: OUTPUTS:
PACE PACE

DM74154 ACO Bit DM74154 ACO Bit

G1

G2 1 1 1

A 2 2 2

B 3

C 4 ,

D 5

15 15

FUNCTIONAL OPERATION

This program is written as a subroutine that performs

4-line to 16-line decoding. It is assumed that when the

subroutine is called, the main program has already

loaded the decode enable and data inputs into ACO
according to the assignment specified previously. Since

the subroutine requires that AC1 be used as a working

register, the first operation of the subroutine is to push

AC1 onto the stack so that the original contents of AC1
can be restored at the end of the subroutine.

After the original contents of AC1 are stored on the

stack, all sixteen bits of AC1 are set high and the ACO
G1 and G2 bits are tested for the zero (low) state. If

either bit is high, no decoding occurs and AC1 is copied

into ACO to set all sixteen bits of ACO high. Then AC!
is pulled from the stack to restore the original contents

and the subroutine is exited with ACO set to FFFF to

indicate that an invalid decode was detected.

If both the ACO G1 and G2 bits are low, bit of AC1
is set low to initiate the decode sequence, then the

contents of ACO are tested for zero to determine whether

bit is the selected output. If the contents of ACO are

zero, AC1 is copied into ACO to complete the decode

sequence and the subroutine is exited after the original

contents of AC1 are restored from the stack. If the

contents of ACO are not zero, further decoding is ac-

complished by rotating AC1 left while decrementing

ACO by four after each shift until the contents of ACO
equal zero. A decrement of four is required because the

ACO G1 and G2 bits are zero and the least significant

ACO data select bit (A) is located at bit position 2, which,

in effect, multiplies the value of the A-D data select

bits by a factor of four. Thus, a decrement of four

cancels the multiplication factor without the use of

additional instructions and a zero value in ACO indicates

that the low-level bit in AC1 has been rotated to the

appropriate output position.

Upon detection of ACO = 0, the contents of AC1 are

copied into ACO, AC1 is pulled from the stack to restore

the original contents, and the subroutine is exited with

the results of the decode stored in ACO.

4-21

M 4-Line to 16-Line Decoder/Deimultiplexer

FLOW CHART

Save contents of AC1

Set all bits of AC1 high

DECODE

PUSH AC1
ONTO STACK

\

PUSH ACt
-X'FFFF

sS ACO ^\
<s. BIT - 1 j*

YES „ G1 = 1?

Tno

vvN BIT 1 - \j/* G2 = 1?

Jno

Set bit of AC1 lowSET AC1
= X'FFFE

\

<^CVl, Test ACO A-through-D bits for

i ! LOOP
'

no

r

Rotate AC1 low-level bit to output

position that corresponds to value

of ACO A-through-D bits

ROTATE ACI
LEFT 1 BIT

\

DECREMENT
ACO BY 4

<4——<T ACO-0 >

YES

' '

Transfer output to ACO

Restore AC1

COPY ACI
TO ACO

I

PUUAC1
OFF STACK

(RETURN
)

PROGRAM LISTING

l ; 4 TO 1 6 DECODE/DEMULTIPLEX
8 0000 /=4C0

3 0001 l=1C1 1

4 0000 6100 A 1JECODE: push ACI i SAVE ACI ON STACK
5 0001 51 FF A LI ACW0FF 5 SET ACI = FFEF
6 0002 4306 A BOC 3, EXIT ; BRANCH I F Gl = 1

7 0003 4405 A BOC 4, EXIT ; BRANCH I F G2 = 1

8 0004 51FE A LI AC1*0FE 5 SET ACI = FFFE
9 0005 4103 A BOC 1 j EX IT i EXIT IF AC0 =

10 0006 2102 A 1-OOP: ROL ACI* 1*0 JROTATF ACI LEFT 1

1 1 0007 78FC A AIS2 AC0*-4 ;DECREMEMT AC0.PY 4

12 0008 19FD A JMP LOOP ; CONTINUE TESTING
13 0009 5C40 A SXIT: RCPY AC1,AC0 JSAVE RESULTS I M AC0
14 000A 6500 A PULL ACI ;RESTORE ACI FROM STACK
15 000B 8000 A RTS ; RETURN)
16 0000 • EMD

4-22

^ Proprietary DM72/DM8220

9-Bit Parity Generators/Checkers

General Description

These circuits can be used both to check for parity and
to generate a parity bit. When the generation of a parity

bit is desired, the eight data inputs are connected to the

transmission lines. If a low logic level is then connected

to the parity input, the Circuit will generate odd parity.

The succeeding parity checker will acknowledge an odd
number of "1's" (odd parity) with a low logic level on
its output. If a high logic level is connected to the parity

input of the first parity generator, the parity checker

will acknowledge even parity with a high logic level on
its output, although the output of the parity generator

will be low.

Features

Typical propagation delay 34 ns

Typical power dissipation 130 mW

Connection Diagram Truth Table

DATA INPUTS

NC

ni:

X
OUTPUT

l» 13 12 ii 10 9 B

1'
2 :i 4 5 6

1'

PARITY
INPUT

GND

DATA INPUTS

7220/8220(J), (W), (W)

PARITY
INPUT OUTPUT* INPUTS A THRU H

H L
Even number of inputs

are High

L L
Odd number of inputs

are High

"Single device

Typical Application

If the control line is ei logical "0" the parity generator

will generate odd parity. The parity checker will

acknowledge the presence of an odd number of "1's"

(odd parity) with a logical "0" on its output.

If the control line is a logical "1" the parity generator

will generate even parity. The parity checker will

acknowledge the presence of an even number of "1's"

(even parity) with a logical "1" on its output.

CONTROL

OM7220/UM8220
AS PARITY GENERATOR

DM7220/DM8220
AS PARITY CHECKER

4-23

~H Parity Checker/Generator

HARDWARE SUMMARY AND PROGRAM DESCRIPTION

SUMMARY FUNCTIONAL OPERATION

The DM8220 can be used either to generate parity or to

check parity. As shown in the truth table below, it

continually processes the PARITY INPUT along with

the 8-bit Data Input to provide a high OUTPUT in

response to an even number of ones, and a low OUTPUT
in response to an odd number of ones. Thus, when the

DM8220 is used as a parity generator, the PARITY
INPUT is preset to the high or low state to select even

or odd parity, respectively; when the DM8220 is used as

a parity checker, even parity is indicated by a high

output and odd parity is indicated by a low output.

PARITY 8-BIT DATA PARITY PARITY
INPUT INPUT

OUTPUT GENERATED DETECTED

High Odd"1"s High Even Even

High Even "1"s Low Even Odd
Low Odd'T's Low Odd Odd
Low Even "1"s High Odd Even

ASSIGNMENTS

The DM8220 parity generation/detection function may

be implemented with PACE using accumulator ACO as

an input/output data register and accumulators AC1 and

AC2 as working registers. The flowchart and program

listing that follow assume that the AGO bit positions are

assigned as follows:

Parity Generation

INPUTS: OUTPUT:

DM8220 PACE DM8220 PACE

INPUT A
•

ACO Bit

•

OUTPUT ACO Bit 8

•

INPUT H

•

ACQ Bit 7

PARITY INPUT Pro ram word TYPE

Parity Detection

INPUTS:

DM8220

INPUT A

PACE

ACO Bit

OUTPUT:

DM8220 PACE

OUTPUT Parity check - RTS + 1

Parity error - RTS

INPUT H
PARITY INPUT

ACO Bit 7

ACO Bit 8

This program is written as a subroutine that either

generates or checks parity. Both functions require that

the type of parity desired (even or odd) be set previously

by the subroutine SETPTY. The following examples

show the use of SETPTY:

LI ACO,
JSR SETPTY

or

LI ACO, 1

JSR SETPTY

;Load odd parity into ACO
;Set parity

;Load even parity into ACO
;Set parity

Since the subroutine PARITY can be used both to gener-

ate and detect parity, functional implementation of the

subroutine requires that the programmer take into ac-

count the types of outputs provided. For parity genera-

tion purposes, bit 8 of ACO serves as a parity output

since it is always set to reflect the type of parity selected

(e.g., if even parity is selected and ACO bits through 8

equal an odd number of logic ones, ACO bit 8 is set high

during execution of the subroutine; if even parity is

selected and ACO bits through 8 equal an even number

of logic ones, the logical state of ACO bit 8 is not

changed during execution of the subroutine.) For parity

detection purposes, bit 8 of ACO serves as the ninth bit

of the input data word and the RTS and RTS + 1 exits

from the subroutine serve to indicate, respectively,

whether a parity error or valid parity was detected. The

examples that follow the program listing indicate how the

outputs of the subroutine are typically processed for

parity generation and for parity detection.

When the subroutine PARITY is called by the main pro-

gram, it is assumed that the input data word has already

been loaded into ACO. The first step of the subroutine,

therefore, is to push working registers AC1 and AC2 onto

the stack so that the original contents of AC1 and AC2

can be restored at the end of the subroutine. After AC1

and AC2 are pushed on the stack, AC1 is initialized to

zero for use as a bit counter and AC2 is initialized to nine

for use as a loop counter. ACO is then rotated right

while AC2 is decremented to zero to allow the logic state

of each input bit to be tested and AC1 to be incremented

each time that a logic-one bit is detected. Thus, when

AC2 = 0, bit of AC1 will be high if an odd number of

logic-one bits were detected and low if an even number

of logic-one bits were detected. Upon detection of AC2 =

0, AC1 is shifted right one place with link to preserve

the status of bit in the link. Then AC1 is pulled from

the stack to restore its original contents, ACO is rotated

right to return the data word to the assigned location,

and the contents of AC2 (zero) are compared with the

contents of memory location TYPE via a Skip If Not

Equal (SKNE) instruction to determine whether even or

odd parity is required for the main program. Depending

on the type of parity required, the link bit is tested either

for the high or low state to allow valid parity/parity

error detection.

4-24

^
When even parity is required, a low state for the link bit

indicates valid parity and a high state indicates a parity

error; when odd parity is required, the opposite is true.

Thus, if the state of the link bit indicates valid parity,

AC2 is pulled from the stack to restore the original

contents and the subroutine is exited via a Return From
Subroutine (RTS) + 1 instruction to provide a valid

parity return to the main program. If the state of the

Parity Checker/Generator

link bit indicates a parity error, bit 8 of AC2 is set high

and the contents of AC2 are Exclusively OR'ed with the
contents of ACO to change the state of output parity bit

8. Then AC2 is pulled from the stack to restore the
original contents, and the subroutine is exited via a Return
From Subroutine (RTS) instruction to provide a parity

error return to the main program.

FLOWCHART

(SETPTY
J

* i

AND ACO
WITH X'0001

J.
STORE ACO
IN TYPE

SET PARITY routine

Mask ACO to isolate parity bit

Save the parity

(return
j

f PARITY
J

PUSH AC1 AND
AC2 ON STACK

Save contents of AC1 and AC2

SETACI -0

SETAC2-9

INCREMENT ACI
(BIT COUNT)

Initialize AC1 as Bit Counter and
AC2 as Loop Counter

Detect Odd or Even Parity

4-25

#
FLOW CHART (Continued)

Parity Checker/Generator

1
SHIFT AC1
+ LINK

RIGHT 1 BIT

Set link high or low to indicate

odd or even parity, respectively

PULLAC1
FROM STACK

Restore original contents of AC1

(return* i

)

LOAD BITS
MASK INTO AC2

Rotate data input to original

position

Check type of parity selected

Even parity selected

Is count odd?

Restore original contents of AC2

Odd parity selected

Is count odd?

EXCLUSIVE-OR
AC0WITHAC2

Toggle Bit 8 in ACO

PULL AC2

OFF STACK

T
(RETURN)

Restore original contents of AC2

Error Return if parity check

4-26

M
PROGRAM LISTING

Parity Checker/Generator

1 J PARITY CHECKER/ GEN
2 0000 AC0 =

3 0001 AC1 =
1

4 0002 AC2 = 2
5 0008 LINK = P.

6 0000 6200 A PARITY: PUSH AC2
7 0001 6100 A PUSH AC1
8 0002 5100 A LI AC1*0
9 0003 4301 A LOOP: BOC 3>LP1

10 0004 1901 A JMP LP2
1 1 0005 7901 A LPl: AISZ AC 1 > 1

12 0006 2402 A LP2: POP * 1 >

13 0007 7AFF A AISZ AC2*-1
14 0008 19FA A JMP LOOP
15 0009 2D03 A SHP AC I* 1,

1

16 000A 6500 A PULL AC1
17 000B 2012 A POL AC0>9*
18 000C F90E A SKNE AC2,TYPE
19 000D 1903 A JMP ODD
20 J! EVEN PARITY
21 000E 4803 A BOG LINK,SET8
22 000F 6600 A EXIT: PULL AC2
23 0010 8001 A RTS 1

24 J» ODD PARITY
25 001 1 48 FD A ODD: BOC LINK* EXIT
26 0012 C903 A SETS: LD AC2.. $0100
27 0013 5880 A RXOR AC2,AC0
28 0014 6600 A PULL AC2
29 0015 8000 A RTS
30 0016 0100 A $0100: • WORD 0100
31 J SET PARITY ROUTINE
32 0017 A902 A SETPTY: AND AC0*$0001
33 0018 D102 A ST AC0*TYPE
34 0019 8000 A RTS
35 001A 0001 A $0001: • WORD 1

36 001B 0000 A TYPE: • WORD
37 0000 • END

ERATOR

SAVE REGISTERS OsJ STACK

SET BIT COUNT =

: BRANCH IF AC0 BIT = 1

; increment bit counter
;rotate ac0 right 1 bit
; decrement loop counjter
jacp. not zero
i put lsb of ac1 in link
; restore ac1 from stack
preposition i>jput data
;skip if parity is even
jparity is odd

mf count odd, set even
j restore ac2 from stack
i NORMAL RETURN

;IF COUNT ODD* RETURN
;LOAD MASK INTO AC2
J TOGGLE AC0 BIT 8
J RESTORE AC2 FROM STACK
J CHECK ERROR RETURN
iBIT 8 MASK

;ZERO BITS 15 THRU 1

J SAVE PARITY IN TYPE
J RETURN
;mask
; parity type save

4-27

% MSI DM54/DM7485,L85,LS85

General Description

These four-bit magnitude comparators perform com-

parison of straight binary or BCD codes. Three

fully-decoded decisions about two, 4-bit words (A, B)

are made and are externally available at three outputs.

These devices are fully expandable to any number of

bits without external gates. Words of greater length may

be compared by connecting comparators in cascade. The

A > B, A < B, and A = B outputs of a stage handling

less-significant bits are connected to the corresponding

inputs of the next stage handling more-significant bits.

The stage handling the least-significant bits must have a

high-level voltage applied to the A = B input and in

addition for the L85, low-level voltages applied to the

Connection Diagrams

DATA INPUTS

|ie

A 3 B

16

2 A

14

2 f

13

1 B

12

1

11

A (

10

D

9

B

1

3 A

2

<B A

3

=B A

4

>B A

5

>B A

6

>B A

7

<B
I'

GND

INPUT CASCAD NG INPUTS OUlrpuTS

5485(J), <W); 7485(J), (N), (W);

54LS85/74LS85IJ), (N), (W|

4-Bit Magnitude Comparators

A > B and A < B inputs. The cascading paths of the 85,

and LS85 are implemented with only a two-gate-level

delay to reduce overall comparison times for long words.

Features

TYPE

85

L85

LS85

TYPICAL
POWER

DISSIPATION

275 mW
20 mW
52 mW

TYPICAL
DELAY

(4-BIT WORDS)

23 ns

55 ns

24 ns

INPUTS

A3

OUTPUTS
,

'
.

A>B A<B

'(3 12

BO AO

INPUTS

A-B
OUTPUT

A>B A<B

6

A = B,

CASCADING INPUTS

54L85/74L85(J), (N), (W)

A1

INPUT

"T

Truth Tables

COMPARING
INPUTS

CASCADING
INPUTS

OUTPUTS

A3, B3 A2, B2 A1.B1 AO, BO A>B A<B fi = B A>B A<B A=B

A3>B3 X X X X X X H L L

A3<B3 X X X X X X L H L

A3 = B3 A2>B2 X X X X X H L L

A3 = B3 A2<B2 X X X X X L H L

A3 = B2 A2 = B2 Al >B1 X X X X H L L

A3 = B3 A2 = B2 Al <B1 X X X X L H L

A3 = B3 A2 = B2 Al = Bl A0>B0 X X X H L L

A3 = B3 A2 = B2 A1 = B1 A0<B0 X X X L H L

A3 = B3 A2 = B2 A1 = Bl AO = BO H L L H L L

A3 = B3 A2 = B2 A1 = B1 AO = BO L H L L H L

A3 = B3 A2 = B2 Al = B1 AO = BO L L H L L H

85, LS85

L85

A3 = B3

A3 = B3

A3 = B3

A3 = B3

A3 = B3

A2 - B2

A2 = B2

A2 = B2

A2 = B2

A2 = B2

Al = B1

Al = Bl

A1 = B1

A1 = B1

A1 = B1

AO =

AO =

AO -

AO =

AO ^

H = High Level, L = Low Level, X = Don't Care

A3= B3 A2 = B2 A1 = B1 AO = BO X X H L L H

A3 = B3 A2 = B2 Al = B1 A0 = BO H H L L L L

A3 = B3 A2 = B2 A1 = B1 A0 = BO L L L H H L

BO L H H L H H

= BO H L H H L H

= BO H H H H H H

= BO H H L H H L

= BO L L L L L L

4-28

M 16 -Bit Magnitude Comparator

HARDWARE SUMMARY AND PROGRAM DESCRIPTION

SUMMARY

The diagram below shows four DM7485s cascaded to

form a 16-bit magnitude comparator. For this configura-

tion, each 7485 individually compares the four input-

variable-A bits with the four-input-variable-B bits. If the

two inputs are not equal, the A > B OUT or the A < [3

OUT line is set high to reflect the appropriate condition.

If the two inputs are equal, the A > B OUT, the A = B

OUT, or the A < B OUT line is set high according to

which of the corresponding inputs is high. For the low-

order 7485, the input configuration shown enables the

A = B IN line to dominate when equality exists. Thus,

the high output from the high-order 7485 reflects the

results of the total 16-bit comparison.

ASSIGNMENTS

The 16-bit magnitude comparison function may be

implemented with PACE using AC1 as an input data

register, ACO as an input/output data register and AC2 as

a working register. The flowchart and program listing

that follow assume that the ACO and AC1 bit positions

are assigned as listed below.

DM7485

INPUTS

PACE DM7485 PACE

Input Variable A ACO Bit Input Variable B AC1 Bit

(LSBI BitO

Bit 1 1

(LSB) BitO

Bit 1 1

Bit 2 2 Bit 2 2

Bit 3 3 Bit 3 3

Bit 4 4 Bit 4 4

Bit 5 5 Bit 5 5

Bit 6 6 Bit 6 6

Bit 7 7 Bit 7 7

Bit 8 8 Bit 8 8

Bit 9 9 Bit 9 9

Bit 10 10 Bit 10 10

Bit 11 11 Bit 11 11

Bit 12 12 Bit 12 12

Bit 13 13 Bit 13 13

Bit 14 14 Bit 14 14

(MSB) Bit 15 15 Bit 15 15

OUTPUTS

DM7485 - PACE
ACO Bit

A>B 1 = High

A-B = High

A<B 2 = High

FUNCTIONAL OPERATION

This program is written as a subroutine that compares

the absolute magnitude of two 16-bit numbers. It is

assumed that when the subroutine is called, the main

program has already loaded the A and B values to be

compared into accumulators ACO and AC1, respectively.

Since the subroutine requires that AC2 be used as a

working register, the first operation of the subroutine

is to push AC2 onto the stack so that the original con-

tents of AC2 can be restored at the end of the subroutine.

Bit 1 of AC2 is then set to 1, AC1 is subtracted from

ACO using the Complement (CAI) and Register Add
(RADD) instructions, and the results are stored in ACO.
Use of the CAI and RADD instructions allows the con-

tents of the accumulators to be treated as unsigned

numbers to the extent that the carry f fag is set whenever

the absolute binary value of ACO is greater than that

of AC1.

After the subtraction is performed, ACO is tested for

zero to see if the original A and B values were equal. If

ACO = 0, AC2 is copied into ACO to set bit of ACO
high, thereby indicating that A = B. If ACO # 0, bit 1 of

AC2 is set high and the carry flag is tested to determine

whether A > B or A < B. If the carry flag is set, A > B,

and AC2 is copied into ACO to set bit 1 of ACO high.

If the carry flag is reset, A < B, so bit 2 of AC2 is set high

before AC2 is copied into ACO. After being copied into

ACO, AC2 is pulled from the stack to restore the original

contents, and the subroutine is exited with the results

of the comparison stored in ACO.

DM7485 Interconnection for 16-Bit Magnitude Comparison

INPUT
VARIABLE

A

l;

INPUT

VARIABLE
A

INPUT
VARIABLE

BIT4-

BIT5-

BIT6-

BIT7-

BIT 4 -

BIT 5-

BIT6-

BIT7-

A>B
A = B

A<B

AO

A1

A2

A3

BO

B1

B2

83

OUT

OUT

OUT

t

INPUT
VARIABLE

A

INPUT

VARIABLE
B

BIT B —

BITS-

BIT 10-

BIT 11-

BIT8-

BIT9-

BIT 10-

BIT 11-

A>B

A=B

A<B

AO

A1

A2

A3

BO

B1

B2

B3

OUT

OUT

INPUT
VARIABLE

INPUT
VARIABLE

BIT 12-

BIT 13-

BIT 14-

(MSB)BIT 15-

BIT 12-

BIT 13-

BIT 14-

(MSBIBIT15-

A>B

A = B

A<B

4-29

^ 16 -Bit Magnitude Comparator

FLOW CHART

Save contents of AC2

AC2 Bit O set high

AC1 subtracted from ACO

C0MP1S

PUSHAC2
ON STACK

1

SET AC2 - 1

1

Z'S COMPLEMENT
AC1

i

ADO ACO, AC1

*

<f aco»aci j;
.YES . A = B?

Juio

AC2 Bit 1 set highLOAD 0002

INTO AC2

<^ CARRY -1^

Jno

.YES . ACO> AC1 (carry set)?

LOAD 0004

INTO AC2

' '

AC2 Bit 2 set high

i '

Results of comparison stored in ACO

Restore AC2 from stack

COPY AC2
TO ACO

I

PULLAC2
FROM STACK

RETURN

PROGRAM LISTING

1 j 16 BIT COMPARATOR
2 0000 AC0 =

3 0001 AC1 = 1

4 0002 AC 2 = 2
5 0000 6200 A C0MP16: PUSH AC2 J SAVE AC2 ON STACK
6 0001 5201 A LI AC2* 1 J SET AC2 BIT = 1

7 0002 7101 A CAI AC1#1 ;2'S COMPLEMENT AC 1

8 0003 6840 A RADD AC1>AC0 ;AC1 + AC0 -> AC0
9 0004 4103 A BOC 1*EXIT ;EXIT IF AC0 = AC 1

10 0005 5202 A LI AC2*2 ;SET AC2 BIT 1 = 1

11 0006 4A01 A BOC 10* EX IT iEXIT IF AC0 > AC 1

12 0007 5204 A LI AC2*4 - ;SET AC2 BIT 2 = 1

13 0008 5C80 A EXIT: RCPY AC2*AC0 ;COPY AC2 TO AC0
14 0009 6600 A PULL AC2 iRESTORE AC2 FROM STACK
15 000A 8000 A RTS ; RETURN
16 0000 • END

4-30

^ MSI

General Description

These synchronous, presettable counters feature an
internal carry look-ahead for application in high-speed
counting designs. The 160A, 162A, LS160, LS162, are

decade counters and the 161 A, 163A, LS161, LS163
are 4-bit binary counters. The carry output is decoded
by means of a NOR gate, thus preventing spikes during
the normal counting mode of operation. Synchronous
operation is provided by having all flip-flops clocked
simultaneously so that the outputs change coincident

with each other when so instructed by the count-enable

inputs and internal gating. This mode of operation
eliminates the output counting spikes which are normally
associated with asynchronous (ripple clock) counters.

A buffered clock input triggers the four flip-flops on
the rising (positive-going) edge of the clock input

waveform.

These counters are fully programmable; that is, the

outputs may be preset to either level. As presetting is

synchronous, setting up a low level at the load input

disables the counter and causes the outputs to agree

with the setup data after the next clock pulse regardless

of the levels of the enable input. Low-to-high transitions

at the load input of the 160A through 163A or LS160
through LS163 are perfectly acteptable, regardless of the
logic levels on the clock or enable inputs. The clear

function for the 160A, 161A, LS160, and LS161 is

asynchronous; and a low level at the clear input sets all

four of the flip-flop outputs low regardless of the levels

of clock, load, or enable inputs. The clear function for

the 162A, 163A, LS162, LS163, is synchronous; and a

Features

Synchronously programmable

Internal look-ahead for fast counting

Carry output for n-bit cascading

Synchronous counting

Load control line

Diode-clamped inputs

DM54/DM74160A,LS160,161A,LS161,162A,LS162,163A,LS163

Synchronous 4-Bit Counters

low level at the clear input sets all four of the flip-flop

outputs low after the next clock pulse, regardless of the

levels of the enable inputs. This synchronous clear

allows the count length to be modified easily, as decoding
the maximum count desired can be accomplished with
one external NAND gate. The gate output is connected
to the clear input to synchronously clear the counter to

all low outputs. Low-to-high transitions at the clear

input of the 162A and 163A are also permissible regard-

less of the logic levels on the clock, enable, or load inputs.

The carry look-ahead circuitry provides for cascading

counters for n-bit synchronous applications without
additional gating. Instrumental in accomplishing this

function are two count-enable inputs and a ripple carry

output. Both count-enable inputs (P and T) must be
high to count, and input T is fed forward to enable the

ripple carry output. The ripple carry output thus enabled
will produce a high-level output pulse with a duration

approximately equal to the high-level portion of the QA
output. This high-level overflow ripple carry pulse can
be used to enable successive cascaded stages. High-to-

low-level transitions at the enable P or T inputs of the

160A through 163A or LS160 through LS163, may
occur regardless of the logic level on the clock.

LS160 through LS163 feature a fully independent clock

circuit. Changes made to control inputs (enable P or T,

load or clear) that will modify the operating mode have
no effect until clocking occurs. The function of the
counter (whether enabled, disabled, loading, or counting)
will be dictated solely by the conditions meeting the
stable setup and hold times.

jnting TYPICAL PROPAGATION TYPICAL TYPICAL
g TYPE TIME, CLOCK TO CLOCK POWER

Q OUTPUT FREQUENCY DISSIPATION

160 thru 163 14 ns 35 MHz 315 mW
LS160 thru LS163 14 ns 32 MHz 93 mW

Connection Diagram

ripple:

CARRY
Vcc OUTPUT

OUTPUTS

Qo
ENABLE

T LOAD

II- 1!i 14 13 12 11 10 9

-o

A

>

1 2 3 4 5 6 1

1

g

54160A(J), (W); 74160A(J), (N), (W)
54LS160/74LS160U), (N), (W);

54161AU), (W>; 74161AW), (N), (W)

54LS161/74LS16KJ), (N), (W);

54162AM), (W); 74162AU), (N), (W)
54LS162/74LS162(J), (N), (W);

54163AU), <W); 74163AU), (N), (W)
54LS163/74LS163IJ). (N), (W)

CLEAR CLOCK D ENABLE GND
P

DATA INPUTS

4-31

BCD Counter

HARDWARE SUMMARY AND PROGRAM DESCRIPTION

SUMMARY ASSIGNMENTS

The diagram below shows how four DM74160/DM74162

devices may be cascaded to form a fully synchronous

4-stage BCD counter. For this application, counting is

enabled when a high Count Enable signal is applied to

the E/P inputs of the counter stages. While counting is

enabled, the look-ahead carry (C/O) output of each stage

serves as a gated count enable signal to the next stage to

allow each stage to be incremented at the same time that

the previous stage is clocked to zero. Thus, a high look-

ahead carry output is provided by the last stage when

the counter is at the maximum value of 9999.

DM74160/DM74162 BCD Counter

COUNT ENABLE ,

PRESET
INPUT

flLSB]

BITO

BIT1-

BIT2-

BIT3-

>o "A

CLEAR
ENA8LET

ENABLE

P

CLOCK

LOAD

DATA A Qg

DATA B C

DATA C DD

DATA D
CARRY

D

COUNT ENABLE
,

^c

PRESET.

INPUT

BIT4-

BIT6-

BIT8-

BIT7-

CLEAR
ENABLE

T

ENABLE

P

CLOCK

LOAD (

DATA A (

DATA B I

DATA C (

DATA D
CARRY

COUNT ENABLE ,

^O

I

BITS-

BIT 9-

BIT 10-

BIT 11—

CLEAR
ENABLE

T

ENABLE P

CLOCK

LOAD

DATA A

DATA B

DATA C

A

DATA D
CARRY

COUNT ENABLE,

PRESET
INPUT

BIT 12-

BIT 13-

BIT 14-

BIT15-

CLEAR
ENABLE T

ENABLE P

CLOCK

LOAO I

DATA A I

DATA B I

DATA C I

DATA

- BIT (Al

-BIT KB)

-BIT 2 (CI

-BIT 3(D)

-BIT 4(A)

-BIT 5(B)

-BITS (CI

-BIT 7(D)

-BITB(A)

-BIT 8(B)

-BIT 10(C)

-BIT 11(01

-BIT 12 (A)

-BIT13IB)

- BIT 14 IC)

-BIT 15(0)

The 4-stage BCD counter function may be implemented

with PACE as a multiple-entry subroutine. The flowchart

and program listing that follow assume that a memory

location is dedicated to storage of the count, that AGO
is used as a working register for altering the stored count,

and that input/output assignments are as listed below.

INPUTS:

DM74160/
DM74162

Clear

Load

Count (E/P,

E/T, CK)

OUTPUTS:

DM74160/
DM74162

0000-9999

C/O (last stage)

PACE

CLEAR entry to Decade Counter sub-

routine

PRESET entry to Decade Counter

subroutine

INCREMENT entry to Decade Counter

subroutine (clock rate is equal to fre-

quency of calling)

PACE

Contents of memory location COUNT
Status Register bit 7 (carry flag)

-CARRY

FUNCTIONAL OPERATION

This program is written as a multiple-entry subroutine

that clears, presets, or increments a BCD counter. When

the subroutine is entered at the CLEAR address, the

contents of AC0 are set to zero, the carry flag is reset

to clear any previous status (see the preface) and the

contents of AC0 are loaded into memory location

COUNT to initialize the stored value to zero. When the

subroutine is entered at the PRESET address, it is as-

sumed that the desired preset value has already been

loaded into AC0 by the main program so the contents

of AC0 are not altered during execution of the sub-

routine. Thus, after the carry flag is reset the contents

of AC0 are loaded into COUNT to initialize the stored

count to some value between 0000io and 9999 10.

The INCREMENT entry to the subroutine combines the

functions of the E/P, E/T, and CK inputs and the C/O

output of the DM741 60/DM741 62 counters. When the

subroutine is entered at this address, the value stored

in COUNT is loaded into AC0 and the carry flag is reset.

The contents of AC0 are then incremented by one via a

Decimal Add (DECA) instruction, and the new value is

returned to COUNT. Use of the Decimal Add instruction

allows the stored count to be treated as a 4-digit decimal

number and the carry flag to be set when AC0 is

incremented from 9999ifj to OOOOio- Since the sub-

routine is otherwise exited with the carry flag reset, the

carry flag can be tested upon return to the main program

to detect completion of a normal count sequence.

4-32

^ BCD Counter

FLOW CHART

Clear ACO

Clear carry

Load the previous count

Clear carry

Add 1 to the count

CLEAR

1

SET ACO =

>(PRESET

' '

RESET CRY =

'

INCR

1

LOAD COUNT
INTO ACD

I

RESET CRY -0

I

DECIMAL ADD
1 TD ACQ

Save the countSTORE ACO
IN COUNT

RETURN

PROGRAM LISTING

1
•
> BCD COUNTER

2 0000 AC0
3 0007 CRY 7 J CARRY
4 0000 5000 A CLEAR: LI AC0J0 J SET AC0 =

5 0001 3700 A PRESET! PFL6 CRY ;SET CARRY =

6 0002 1903 A JMP EXIT I

7 0003 C104 A INCR: LD AC0* COUNT ;LOAD COUNT INTO AC0
8 0004 3700 A PFLG CRY ;SET CARRY
9 0005 8903 A DECA AC0.»ONE ; DECIMAL ADD 1 TO AC0
10 0006 D101 A EXITS ST AC0> COUNT i STORE AC0 IN COUNT
11 0007 8000 A RTS i RETURN
12 0008 0000 A COUNT: .WORD i COUNTER SAVE
13 0009 0001 A ONE: •WORD 1 ; CONSTANT
14 0000 • END

4-33

^ MSI DM54/DM74160A,LS160,161A,LS161,162A,LS162,163A,LS163

General Description

These synchronous, presettable counters feature an

internal carry look-ahead for application in high-speed

counting designs. The 160A, 162A, LS160, LS162, are

decade counters and the 161A, 163A, LS161, LS163
are 4-bit binary counters. The carry output is decoded

by means of a NOR gate, thus preventing spikes during

the normal counting mode of operation. Synchronous

operation is provided by having ail flip-flops clocked

simultaneously so that the outputs change coincident

with each other when so instructed by the count-enable

inputs and internal gating. This mode of operation

eliminates the output counting spikes which are normally

associated with asynchronous (ripple clock) counters.

A buffered clock input triggers the four flip-flops on
the rising (positive-going) edge of the clock input

waveform.

These counters are fully programmable; that is, the

outputs may be preset to either level. As presetting is

synchronous, setting up a low level at the load input

disables the counter and causes the outputs to agree

with the setup data after the next clock pulse regardless

of the levels of the enable input. Low-to-high transitions

at the load input of the 160A through 163A or LS160
through LS163 are perfectly acceptable, regardless of the

logic levels on the clock or enable inputs. The clear

function for the 160A, 161A, LS160, and LS161 is

asynchronous; and a low level at the clear input sets all

four of the flip-flop outputs low regardless of the levels

of clock, load, or enable inputs. The clear function for

the 162A, 163A, LS162, LS163, is synchronous; and a

Synchronous 4-Bit Counters

low level at the clear input sets all four of the flip-flop

outputs low after the next clock pulse, regardless of the

levels of the enable inputs. This synchronous clear

allows the count length to be modified easily, as decoding

the maximum count desired can be accomplished with

one external NAND gate. The gate output is connected

to the clear input to synchronously clear the counter to

all low outputs. Low-to-high transitions at the clear

input of the 162A and 163A are also permissible regard-

less of the logic levels on the clock, enable, or load inputs.

The carry look-ahead circuitry provides for cascading

counters for n-bit synchronous applications without

additional gating. Instrumental in accomplishing this

function are two count-enable inputs and a ripple carry

output. Both count-enable inputs (P and T) must be

high to count, and input T is fed forward to enable the

ripple carry output. The ripple carry output thus enabled

will produce a high-level output pulse with a duration

approximately equal to the high-level portion of the QA
output. This high-level overflow ripple carry pulse can

be used to enable successive cascaded stages. High-to-

low-level transitions at the enable P or T inputs of the

160A through 163A or LS160 through LS163, may
occur regardless of the logic level on the clock.

LS160 through LS163 feature a fully independent clock

circuit. Changes made to control inputs (enable P or T,

load or clear) that will modify the operating mode have

no effect until clocking occurs. The function of the

counter (whether enabled, disabled, loading, or counting)

will be dictated solely by the conditions meeting the

stable setup and hold times.

Features

Synchronously programmable

Internal look-ahead for fast counting

Carry output for n-bit cascading

Synchronous counting

Load control line

Diode-clamped inputs

TYPE

160 thru 163

LS160thru LS163

TYPICAL PROPAGATION
TIME, CLOCK TO

Q OUTPUT

14 ns

14 ns

TYPICAL

CLOCK
FREQUENCY

35 MHz
32 MHz

TYPICAL
POWER

DISSIPATION

315 mW
93 mW

Connection Diagram

RIPPLE OUTPUTS

> ENABLE
VCc OUTPUT

1

Oa Q8 Oc Ud T LOAD

|l. 15 14 13 12 11 10 9

-0 3-

/s

1 2 3 4 5 6
> I'

CLEAR CLOCK A B C D ENABLE GND
V, j p

DATA INPUTS

54160A(J). (W); 74160A(J), (N), (W)

54LS160774LS160(J), (N), (W);

54161A(J), (W); 74161A(J), (N), (W)

54LS161/74LS16KJ), (N), (W);

54162A(J), (W); 74162AU), (N), (W)

54LS162/74LS162(J). <N), (W);

54163AIJ), (W>; 74163AU), (N), (W)

54LS163/74LS163(J), (N). (W)

4-34

Binary Counter

HARDWARE SUMMARY AND PROGRAM DESCRIPTION

SUMMARY ASSIGNMENTS

The diagram below shows how four DM74161/DM74163
devices may be cascaded to form a fully synchronous

16-bit binary counter. For this application, counting is

enabled when a high Count Enable signal is applied to

the E/P inputs of the counter stages. While counting is

enabled, the look-ahead carry (C/O) output of each stage

serves as a gated count enable signal to the next stage to

allow each stage to be incremented at the same time that

the previous stage is clocked to zero. Thus, a high look-

ahead carry output is provided by the last stage when the

counter is at the maximum value of FFFF.

DM74161/DM74163 Binary Counter

COUNT ENABLE ,

PRESET
INPUT

(LSB)

EIITO

HIT 1—

hit 2-

!IIT 3-

^O

CLEAR
ENABLE

T

ENABLE

P

CLOCK

LOAD Oa

DATA A Qb

OATA B Qc

DATA C D

DATA D
CARRY

COUNT UNABLE

PRESET.
INPUT

BIT 4-

BIT5-

BITS-

BIT 7-

CLEAR
ENABLE

T

ENABLE

P

CLOCK

O LOAD

OATA A

OATA B

DATA C

DATA D

COUNT ENABLE

PRESET

PRESET
INPUT

HIT S-

IIIT9-

BIT ID-

BIT 11-

CLEAR
ENABLE

T

ENABLE?

CLOCK

O LOAD

DATA A

OATA B

OATAC

OB

°D

DATA D
CARRY

COUNT ENABLE

PRESET
INPUT

BIT 12-

BIT 13-

BIT 14.

BIT 15-

CLEAR
ENABLE

T

ENABLE?

CLOCK

0 LOAD

OATA A

DATA B

OATAC

DATA D
CARRY

BIT (2°)

• BIT1 (2')

BIT 2 (2
2

l

BIT 3 (2
3

|

•• BIT 4 (2
4

1

BIT5I2 5
)

BIT6(26>

BIT7I27
)

- BIT B (2
8

)

-+-BIT9(29 I

—BIT 10 (2

-+-BIT11[2 1 '|

10,

->BIT12(212
)

-B> BIT 13 (Z
13

)

- BIT 14 I2">

—* BIT15 (2
1s

t

The 16-bit binary counter function may be implemented

with PACE as a multiple-entry subroutine. The flowchart

and program listing that follow assume that a memory
location is dedicated to storage of the count, that ACO
is used as a working register for altering the stored count,

and that input/output assignments are as listed below.

INPUTS:

DM74161/
DM74163

Clear

Load

Count (E/P)

E/T, CKI

OUTPUTS:

DM74161/
DM74163

0000-9999

C/O (last stage)

PACE

CLEAR entry to Binary Counter sub-

routine

PRESET entry to Binary Counter sub-

routine

INCREMENT entry to Binary Counter

subroutine (clock rate is equal to fre-

quency of calling)

PACE

Contents of memory location COUNT
Status Register bit 7 (carry flag)

-CARRY

FUNCTIONAL OPERATION

This program is written as a multiple-entry subroutine

that clears, presets, or increments a binary counter.

When the subroutine is entered at the CLEAR address,

the contents of ACO are set to zero, the carry flag is re-

set to clear any previous status (see the preface), and the

contents of ACO are loaded into memory location

COUNT to initialize the stored value to zero. When the

subroutine is entered at the PRESET address, it is as-

sumed that the desired preset value has already been

loaded into ACO by the main program so the contents

of ACO are not altered during execution of the subroutine.

Thus, after the carry flag is res'et the contents of ACO are

loaded into COUNT to initialize the stored count to

some value between 0000 and FFFF.

The INCREMENT entry to the subroutine combines the

functions of the E/P, E/T, and CK inputs and the C/O

output of the DM741 61/DM741 63 counters. When the

subroutine is entered at this address, the value stored in

COUNT is loaded into ACO, then the contents of ACO
are incremented by one via an ADD instruction, and the

new value is returned to COUNT. Use of the ADD
instruction allows the stored count to be treated as a

16-bit binary number and the carry flag to be set when

ACO is incremented from FFFF to 0000. Since the carry

flag is automatically reset by the other two entries to the

subroutine, it can be tested upon return to the main pro-

gram to detect completion of a normal count sequence.

4-35

Binary Counter

FLOW CHART

(CLEAR
J

SET ACQ D

>1

'

(PRESET
)

1

RESET CRY -0

INCR

LOAD COUNT
INTO ACO

\

ADD 1 TO ACO

EXIT

< r

STORE ACO
IN COUNT

Clear ACO

Clear carry

I

Load the previous count

Add 1 to the count

Save the count

(RETURN)

PROGRAM LISTING

1
4
9 BINARY COUNTER

2 0000 AC0 =

3 0000 5000 A CLEAR: LI AC0>0 J SET AC0 =
4 0001 3700 A PRESET: PFLG 7 ;SET CARRY =

5 0002 1902 A JMP EXIT •

6 0003 C103 A INCH: LD AC0*COUNT ;load count into ac0
7 0004 E103 A ADD AC0..ONE ;add i to count in ac0
8 0005 D101 A EXIT: ST AC0* COUNT ; STORE AC0 IN COUNT
9 0006 8000 A RTS ; RETURN

10 0007 0000 A COUNT: • WORD ; COUNTER SAVE
1 1 0008 0001 A ONE: • WORD 1 ; CONSTANT
12 0000 • END

4-36

^ MSI DM54/DM74160A,LS160,161A,LS161/I62A,LS162/I63A,LS163

General Description

These synchronous, presettable counters feature an

internal carry look-ahead for application in high-speed

counting designs. The 160A, 162A, LS160, LS162, are

decade counters and the 161A, 163A, LS161, LS163
are 4-bit binary counters. The carry output is decoded

by means of a NOR gate, thus preventing spikes during

the normal counting mode of operation. Synchronous

operation is provided by having all flip-flops clocked

simultaneously so that the outputs change coincident

with each other when so instructed by the count-enable

inputs and internal gating. This mode of operation

eliminates the output counting spikes which are normally

associated with asynchronous (ripple clock) counters.

A buffered clock input triggers the four flip-flops on

the rising (positive going) edge of the clock input

waveform.

These counters are fully programmable; that is, the

outputs may be preset to either level. As presetting is

synchronous, setting up a low level at the load input

disables the counter and causes the outputs to agree

with the setup data after the next clock pulse regardless

of the levels of the enable input. Low-to-high transitions

at the load input of the 160A through 163A or LS160
through LS163 are perfectly acceptable, regardless of the

logic levels on the clock or enable inputs. The clear

function for the 160A, 161A, LS160, and LS161 is

asynchronous; and a low level at the clear input sets all

four of the flip-flop outputs low regardless of the levels

of clock, load, or enable inputs. The clear function for

the 162A, 163A, LS162, LS163, is synchronous; and a

Features

Synchronously programmable

Internal look-ahead for fast counting

Carry output for n-bit cascading

Synchronous counting

Load control line

Diode-clamped inputs

Synchronous 4 -Bit Counters

low level at the clear input sets all four of the flip-flop

outputs low after the next clock pulse, regardless of the

levels of the enable inputs. This synchronous clear

allows the count length to be modified easily, as decoding

the maximum count desired can be accomplished with

one external NAND gate. The gate output is connected

to the clear input to synchronously clear the counter to

all low outputs. Low-to-high transitions at the clear

input of the 162A and 163Aare also permissible regard-

less of the logic levels on the clock, enable, or load inputs.

The carry look-ahead circuitry provides for cascading

counters for n-bit synchronous applications without

additional gating. Instrumental in accomplishing this

function are two count-enable inputs and a ripple carry

output. Both count-enable inputs (P and T) must be

high to count, and input T is fed forward to enable the

ripple carry output. The ripple carry output thus enabled

will produce a high-level output pulse with a duration

approximately equal to the high-level portion of the QA
output. This high-level overflow ripple carry pulse can

be used to enable successive cascaded stages. High-to-

low-level transitions at the enable P or T inputs of the

160A through 163A or LS160 through LS163, may
occur regardless of the logic level on the clock.

LS160 through LS163 feature a fully independent clock

circuit. Changes made to control inputs (enable P or T,

load or clear) that will modify the operating mode have

no effect until clocking occurs. The function of the

counter (whether enabled, disabled, loading, or counting)

will be dictated solely by the conditions meeting the

stable setup and hold times.

TYPICAL PROPAGATION TYPICAL TYPICAL

TYPE TIME, CLOCK TO CLOCK POWER
Q OUTPUT FREQUENCY DISSIPATION

160 thru 163 14 ns 35 MHz 315 mW
LS160 thru LS163 14 ns 32 MHz 93 mW

Connection Diagram

OUTPUTS

ENABLE
Qd T LOAD

54160AU), <W); 74160A(J), (N), (W)

54LS160/74LS160IJ), (N), (W);

54161A(J), (W); 74161A(J). (N), (W)

54LS161/74LS16KJ), <N), (W);

54162A(J), (W); 74162A(J), (N), (W)

54LS162/74LS162(J), (N), (W);

54163AIJ), (W); 74163AU), (N), (W)

54LS163/74LS163IJ), (N), (W)

CLEAR CLOCK

DATA INPUTS

4-37

^ Binary-to-BCD Conversion

HARDWARE SUMMARY AND PROGRAM DESCRIPTION

SUMMARY

The circuit diagram shows a 16-bit binary counter inter-

connected with a 5-stage decade counter to form a

Binary-to-BCD converter. (Basic operation of the binary

and BCD counters is covered on pages 4-34 to 4-36 and

4-31 to 4-33.) For this application, operation of the

counters is controlled by the three flip-flops that process

the Clock, Start Conversion, and Carry signals to enable

each conversion cycle. As shown in the timing diagram,

each conversion cycle is initiated when the Load flip-flop

is preset on the leading-edge of the Start Conversion pulse,

which enters the complemented binary input into the

binary counter and enters the starting value 0000 into

the decade counter. The Load flip-flop then remains set

until it is clocked reset on the first negative alternation of

the clock following termination of the Start Conversion

pulse. When the Load flip-flop is reset, the low Q output

sets the Delay flip-flop, and the resulting high Conversion

Control signal is clocked into the Start/Stop flip-flop

on the positive alternation of the clock, which allows

counting to start one clock pulse later.

While the Q output of the Start/Stop flip-flop is high,

both the binary and decade counters are counted up by

the clock input until the binary counter provides a look-

ahead Carry output at the count of FFFF. The look-ahead

Carry then resets the Delay flip-flop, and the resulting

low Conversion Control signal is clocked into the Start/

Stop flip-flop on the next positive alternation of the

clock to terminate the conversion cycle. Thus, the con-

version cycle is terminated with the output of the binary

counter equal to 0000 and the output of the decade

counter equal to the decimal value of the original

binary input.

ASSIGNMENTS

The flowchart and program listing that follow assume

that an 8-address block of memory is dedicated to

storage of a binary-to-BCD conversion table, that AC0 is

used as an input data register for entry of the 16-bit

binary input, that all four accumulators are used as

working registers during performance of the conversion,

and that the resulting BCD output is provided via AC0
(four least-significant digits) and AC1 (most-significant

digit).

FUNCTIONAL DESCRIPTION

This routine uses a look-up table to perform the binary-

to-BCD conversion. Each bit in a 16-bit binary number
has a decimal value, as shown in the table below.

BINARY BCD VALUE BINARY BCD VALUE
BIT (if bit set) BIT (if bit set)

1 8 256
1 2 9 512
2 4 10 1024

3 8 11 2048
4 16 12 4096
5 32 13 8192
6 64 14 16384
7 128 15 32768

If a bit is set in the binary number, its BCD value is

added decimally to the contents of a register (the less-

significant register). Bits through 12 of the binary

number are straight look-ups, but bits 13 through 15

require additional operations. Bit 13 may generate carry;

if so, a 1 is added to the contents of a second register

(the most-significant register). The BCD values for bits

14 and 15 are too large for the less-significant register,

so the most-significant BCD digit for bits 14 and 15 is

added to the contents of the most-significant register.

The example below shows the conversion of bit 15.

Binary Input

= 8OOO1
fi
= 32768

1 o

3 8 =3276810 = 8000! 6

' BCD Output

The Binary-to-BCD (BINBCD) subroutine is entered with

the binary number to be converted in AC0. The results

of the conversion are returned in AC1 and AC0. AC1
contains the most-significant BCD number and AC0
contains the four less-significant BCD numbers. The
figure below illustrates the operation of the routine.

15
ACQ

Binary Number Input

BIIMBCD Subroutine Conversion

15
AC1

3 2

Not Used BCD

ACQ

BCD BCD BCD BCD Output

5- Digit BCD Number

Upon entering the BINBCD routine, AC2 and AC3 are

saved on the stack, the address of the lookup table is

loaded into AC3, and AC1 and AC2 are cleared. AC1 and

AC2 will contain the BCD sum during conversion. (AC1
contains the most-significant BCD digit.) Next, binary

input bit 15 in AC0 is tested. If it equals one, a three is

loaded into AC1. AC0 is rotated left one position and

input bit 14 is tested. If it equals one, a one is added to

AC1. The program then goes into a loop, first checking

if AC0 equals zero. If AC0 does not equal zero, bit of

AC0 is tested. If it equals one, AC0 and AC2 are ex-

changed, the BCD value for the bit is added decimally

to AC0, carry is tested, and if high a one is added to

AC1. Finally, AC0 and AC2 are again exchanged. The
loop is completed by incrementing the look-up table

pointer by one, shifting AC0 right one position, then

branching to the beginning of the loop to test the next

bit. If AC0 equals zero, the conversion is completed,

and the program jumps to exit. Exit copies the less-

significant four BCD digits from AC2 to AC0, restores

AC2 and AC3 from the stack, and returns.

4-38

^ Binary-to-BCD Conversion

BINARY
INPUT

(LSBI BIT \l>0
BIT 1 ——-^O-
BITZ

BIT 3

->
{»-

DITfl

BITS

bit e

BIT 7

-Cx>
\>o-

0°-

IT «—[>>
IT 9

rto—[>>
>>
—1>-

-O
—

ENABLE

T

ENABLE?

LOAD

CLOCK

DATA A

DATAB

DATAC
CJ

DATAO

DM74163

!- ENABLE T

-K ENABLE P

O LOflO- CLOCK

— DATA A

-> DATA B

— DATAC ..

OATAD

ENABLE T

ENABLE P

10 All

CLOCK

DATA A

DATAB

DATAC „.
CA

DATA D

'"—1>>

'«—[>>
l>-

o-

I-* ENABLE T

ENABLE P

-O LOAD

k- CLOCK

DATA A

DATAB

DATAC

DATAO

DM741 62

ENABLE T DA

IB

Qd

CARRY

> ENABLE

P

-O LOAD

CLOCK

DM741 62

ENABLE

T

ENABLE

P

LOAD

CLOCK ,

ENABLE T aA

Qb— ENABLE

P

»>0 LOAD

-» CLOCK

°d

CARRY

DM711n

ENABLE T QA

H
ENABLE

P

CLOCK
CARRYd

DM74 1B2

ENABLE T Q
fl

ENABLE P tt8

LOAD QC

CLOCK QD

Timing Diagram

jijnjijnjiJiJiJi-njiJiJiJijnjiJTJT^

LtlAD FF-Q-

LIIADFF-Q"-

START/SrOPFF-Q-

START/STOP FF-G-

~L

"L

4-39

H Binary-to-BCD Conversion

FLOWCHART

f BINBCO
J

PUSH AC!, AC 3

ONTO STACK

X
LOAD LOOKUP
INTOAC3

Save contents of AC2 and AC3

Load address of look-up table

SET Act o

SF.TAC2-0

CZ3
J

SHIFT ACO
RIGHT
1 BIT

Clear AC1 and AC2

Bit 15 of input = 0?

Yes, Load 3 into AC1, 2768 will

be added to ACO to make 32768
(the BCD value of Bit 15)

Position input bit 14

Input bit 14 = 0?

Yes, add 1 to AC1 , 6384 will be
added to ACO to make 16384 (the

BCD value of bit 14)

Exit if ACO =

Is the input bit 1?

Increment look-up table pointer

Shift ACO right 1 position to test

next bit

4-40

Binary-to-BCD Conversion

FLOW CHART (Continued)

(« :

EXCHANGE
AC0ANDAC2

1
ADD BCD
NUMBER
TOACO

Add number from look-up table

to BCD count

4

C<lv^>^_». ADD 1 TO AC1 Add 1 to AC1 if the carry is set

NO

1
< '

EXCHANGE ACO
AND AC2

(^

C im
)

COPY AC2
TOACO

I
PULLAC2.AC3
(IFF STACK

C RETURN J

BCD number is now in AC1 and ACO

Restore AC2 and AC3

4-41

M Binary-to-BCD Conversion

PROGRAM LISTING

1 i BINARY TO BCD
2 0000 AC0 as

3 0001 AC1 = 1

4 0002 AC 2 = 2

5 0003 AC3 = 3

6 000A CARRY = 10

7 0000 6200 A BINBCD: PUSH AC2 ;SAVE REGISTERS ON STACK
8 0001 6300 A PUSH AC3 *

9 0002 CD17 A LD AC3*LOOKUP iLOAD ADDRESS OF LOOKUP
10 0003 5100 A LI AC1*0 ; CLEAR AC1
11 0004 5200 A LI AC2*0 ; CLEAR AC2
12 0005 4201 A BOC 2*. +2 ;branch if AC0 bit 15=0
13 0006 5103 A LI AC1..3 ;LOAD 3 INTO AC1
14 0007 2002 A ROL AC0*1*0 ; ROTATE AC0 LEFT 1 BIT
15 0008 4201 A BOC 2*L00P ;BRANCH IF AC0 BIT 15=0
16 0009 7901 A AISZ AC1* 1 J ADD 1 TO AC1
17 000A 410B A LOOP: BOC l'EXIT ; BRANCH IF AC0 =

18 000B 4303 A BOC 3>LP2 ; BRANCH IF AC0 BIT * 1

19 000C 7B01 A LP1

J

AISZ AC3* 1 ; INCREMENT TABLE POINTER
20 000D 2C02 A SHR AC0* 1*0 ; SHI FT AC0 RIFHT 1 BIT
21 000E 19FB A JMP LOOP JCONTINUE TESTING
22 000F 6E00 A LP2: RXCH AC0*AC2 ; EXCHANGE AC0 AND AC2
23 0010 8B00 A DECA AC0*0(AC3> J ADD BCD NUMBER TO AC0
24 0011 4A02 A BOC CARRY* CRYHI ; BRANCH IF CARRY = 1

25 0012 6E00 A LP3: RXCH AC0..AC2 i EXCHANGE AC0 AND AC2
26 0013 19F8 A JMP LP1 >

27 0014 7901 A CRYHI: AISZ AC1* 1 ;add 1 TO ACl
28 0015 19FC A JMP LP3 y

29 0016 5C80 A EXIT: RCPY AC2*AC0 iCOPY AC2 TO AC0
30 0017 6700 A PULL AC3 ; RESTORE REGISTERS
31 0018 6600 A PULL AC2 J

32 0019 8000 A RTS ; RETURN
33 001A 00 IB T LOOKUP: .WORD . + 1 ; LOOKUP TABLE
34 001B 2768 A • WORD 02768 JBIT 15
35 001C 0001 A • WORD 00001 ;bit
36 001D 0002 A • WORD 00002 ;bit i

37 001E 0004 A • WORD 00004 ;bit 2
38 001F 0008 A .WORD 00008 JBIT 3

39 0020 0016 A • WORD 00016 ;bit 4
40 0021 0032 A • WORD 00032 ;bit 5

41 0022 00 64 A • WORD 00064 ;bit 6
42 0023 0128 A • WORD 00128 iBIT 7
43 0024 0256 A • WORD 00256 ;bit 8
44 0025 0512 A • WORD 00512 ;bit 9
45 0026 1024 A .WORD 01024 ;bit 10
46 0027 2048 A • WORD 02048 ;bit n
47 0028 4096 A • WORD 04096 JBIT 12
48 0029 8192 A • WORD 08192 J BIT 13
49 002A 6384 A • WORD 06384 ;bit 14
50 0000 • END

4-42

^ MSI

General Description

These full adders perform the addition of two 4-bit

binary numbers. The sum (2) outputs are provided for

each bit and the resultant carry (C4) is obtained from
the fourth bit. These adders feature full internal look

ahead across all four bits. This provides the system
designer with partial look-ahead performance at the

economy and reduced package count of a ripple-carry

implementation.

The adder logic, including the carry, is implemented in

its true form meaning that the end-around carry can be

accomplished without the need for logic or level inversion.

DM54/DM7483,LS83A,LS283

4- Bit Binary Adders with Fast Carry

Features

Full-carry look-ahead across the four bits

Systems achieve partial look-ahead performance with

the economy of ripple carry

TYPE

83

LS83A

LS283

TYPICAL ADD TIMES
TWO TWO
8-BIT 16-BIT

WORDS WORDS

23 ns 43 ns

25 ns 45 ns

25 ns 45 ns

TYPICAL POWER
DISSIPATION PER
4-BIT ADDER

290 mW
95 mW
95 mW

Connection Diagrams and Truth Table

B4 GND A1

A3 £2 82

5483IJ), (W); 7483U), (N), (W);

54LS83A/74LS83AU), (N), (W)

16 16 14 13 | 12 11 10 9

>

1 2 3 4 1 5 6 7 8

A2

B3

I. 15 14 13 12 11 10 9

1 2 3 4 5 6 7 8

£2 B2 A2 1:1 A1 B1 CO

54LS283/74LS283IJ), INI, (Wl

GiMn

OUTPUT

WHEN WHEN
INPUT CO = L

-""' WHEN
C2 = L

C0 = H
--""^ WHEN

C2 = H

Al^/' B1 S* A2 jS B2 ./' 11 / £2 -Z' C2. ^S' ^y/' 22 ^X" C2 y/*
^/a3 ^/B3 y/^M yS^BH yS^tt ^/24 s'm s'YZ y^^4 ./C4

L L L L L L L H L L

H L L L H L L L H L

L H L L H L L L H L

H H L L L H L H H L

L L H L L H L H H L

H L H L H H L L L H
L H H L H H L L L H

H H H L L L H H L H

L L L H L H L H H L

H L L H H H L L L H

L H L H H H L L L H

H H L H L L H H L H

L L H H L L H H L H

H L H H H L H L H H

L H H H H L H L H H

H H H H L H H H H H

H = High Level, L = Low Level

Note : Input conditions at A1, B1, A2, B2, and CO are used to determine outputs £1 and £2 and the value
of the internal carry C2. The values at C2, A3, B3, A4, and B4 are then used to determine outputs S3, 24,
and C4.

4-43

H BCD-to-Binary Conversion

HARDWARE SUMMARY AND PROGRAM DESCRIPTION

SUMMARY

The diagram below illustrates five, 4-bit full adders

connected to convert a 3-digit BCD input to a 10-bit

binary output. A 3-digit BCD value was chosen for this

application because it is sufficiently large to illustrate

overall circuit principles of operation, yet does not

require an excessively complex logic diagram. (Cascading

of the adder stages to encompass a 5-digit BCD input

is readily accomplished, but would increase the number

of adders required by a factor of ten.) In the two

examples provided to illustrate circuit operation, the

dashed lines indicate a logic one state and the solid lines

indicate a logic zero state. The method used for the

conversion separates each power of ten into its binary

equivalent, then sums these individual binary values to

derive the final result.

BCD-to-Binary

B4

A4

B3

A3

B2

A2

B1

A1

(1024) 14 —

B4

A4

03

A3

B2

A2

B1

A1

(512) S4

(256) S3

DM7483

(128) S2

(64) S1

(512) S3

DM7483

(2561 S2

(128) S1

(2a).

—

"1
B4

A4

B3

A3

B2

A2

SI

A1

(2561 S4

(128) S3

DM7483

164) S2

(32| SI

CO

(Z»l.

ah
^r

-

1

B|j)CD

\

(2s)

B4

A4

B3

A3

B2

A2

B1

A1

C4

(64) S4

(32) S3

DM7483

(18) S2

(8) SI

™ ±
__*. B4

A4

B3

A3

B2

A2

B1

A1

(32) S4

(161 S3

DM7483

(8) S2

(4) SI

CO

12")

(2
3

)

1

i

1
- ±

(2*1

B4

A4

B3

A3

B2

A2

B1

A1

C4

(16) S4

(8) v3

DM7483

(4) S2

(2) SI

"3

r
(2')

C

2>-

1>-
12")

,

4-44

M BCD-to- Binary Conversion

Example 1. BCD 16 to Binary

16 ;

10

+6

8 =
1 000

+2 = 0,0 1

+4 = 01 00
+2 ~ 001

10 (2
4

)

800-

400-

(512) 14

(2561 Z3

DM7483

(12!) £2

(64) SI

CD

200 D-

100H—

40 P-

h.

C4
B4

A4
(32) £4

63
(16) v3

A3
DM7483

HZ
(8) T7

B1
(4) VI

A1

+-

CO

(16) £4

(8) X3

DM7483

(4) £2

(2) £1

C|N

I

(1024) £4

(5121 £3

DM7483

(258) £2

(128) £1

CO

(641

1321

DM!

(16)

(8)

^^r

2>-

1K-

(2
9

)

(64)

(32)

JT

(28) .

(2').

(28).

(2
5

l

(I4).

(2
3

)

(2
2

l

s1
).

(2»).

Logic 1

_^__ Logic

4-45

H BCD-to-Binary Conversion

Example 2. BCD-999 to Binary

'

800 :

512=1 000000000
245 = 1 00000000

900 = -

+100

32 = 0000 1 00000
64 = 001 000000
32 = 0000 1 00000

999= •

+90 =

+ 80

4=0 00000 01 00
64 = 0001 000000
16 = 00000 1 0000

+ 10 18 =0 000001000
12=0 0000000 10

+ g= + 9 (8 =0 000001000
[1=0 000000001

1111100111

B4
11024) £4

A4

R3 (2
9

)

B4
(512) £4

(512) £3

r
- A4

R?
DM74B3

800»>— —— -•- B3
(260) £3

(250) £2 1

-I- A3
DM74B3 Bl 1 r- B4| (2»)

2M

ff'

"
I AZ

B1

(120) 12

(04) £1

_
1 A1

|

L A4
|

B3 1

(128) £3
A3

(2
7

)

--128--t- -. L
"TJ

A1
CO 1 I

DM7483
B2

(641 £2
l2B| u-— 04

I | I

"
I

«l
o51

,,--32

JL
H-

01
(32) £1

Al
' CO

B4
C4

(64) £4

1

_j
- i

100>- —] *-

1

1

-
B3

A3

02

(32) £3

DM7403

B4

A4

C4

(32) v4
T
\

,2\n
!0

>--t
1

A3
(16) £3

DM7483

1-

1
i

—

A2

01
(81 £1

CO

(2
3

)

!!
'

I— A2

B1

IB) £2

(4) £1

1

1

"1
1

_j A1

—
_L

C|N
L

' (22)

|
"r

— r
1 B4

C4

(10) £4
20—

1

p A4

B3
IB) £3

DM7483
10H— - — A3

T '

'

14) £2

Lf
Bl

A1
(21 11

c tfj

(21)
2

I

,-J-

Logic 1

Logic

4-46

BCD-to- Binary Conversion

ASSIGNMENTS

The BCD-to-binary conversion function may be imple-

mented with PACE as a single-entry subroutine. The
flowchart and program listing that follow assume that a

19-address block of memory is dedicated to storage of a

binary look-up table, that AGO and AC1 are used as input

data registers for entry of the 5-digit BCD value, that all

four accumulators are used as working registers during

execution of the subroutine, and that the result of the

conversion is stored in ACO at the end of the subroutine.

FUNCTIONAL OPERATION

This routine uses two look-up tables to perform the

BCD-to-binary conversion. The first table converts the

BCD numbers in ACO, and the second table converts the

BCD number in ACT Each of the 16 bits of the BCD
numbers in ACO and the 3 bits of the BCD number in

AC1 have a binary equivalent value as shown below.

ACO BINARY VALUE ACO BINARY VALUE
BIT (if bit set) BIT (if bit set)

1 8 100

1 2 9 200
2 4 10 400
3 8 11 800
4 10 12 1000

5 20 13 2000
6 40 14 4000
7 80 15 8000

AC1 BINARY VALUE
BIT (if bit set)

10000 ,

1 20000
2 40000

Each bit in ACO and the three less-significant bits in AC1
are tested. If a bit is high, its binary value is added to a

sum in AC2.

The BCD-to-Binary (BCDBIN) subroutine is entered with

the BCD number to be converted in AC1 and ACO. AC1
contains the most-significant BCD digit, and ACO con-

tains the four less-significant digits. The routine returns

the binary number in ACO. The figure below illustrates

the operation of the routine.

Upon entering the BCDBIN routine, registers AC2, AC3,
and the status flags are saved on the stack. AC2 is cleared,

and AC3 is loaded with the address of the look-up table

used to process the BCD value in ACO. The carry is set to

indicate the program is processing with look-up table 2

(TBL2). The program then goes into a loop, first testing

if ACO equals zero. If it does not, bit of ACO is tested.

If bit equals one, the binary equivalent of the bit is

added to a sum in AC2. In the next step the table

pointer in AC2 is incremented by one. ACO is shifted

right one position, and the program branches to the

beginning of the loop (LOOP) to process the next bit.

When ACO equals zero, the program branches to test the

carry (TESTCY). If the carry is set, it is cleared, the

address of the second look-up table (TBL1) is loaded into

AC3, ACO is exchanged with AC1 , and the program jumps

back to the beginning of the conversion loop (LOOP).

If the carry is already cleared, AC2 is copied to ACO, the

flags and registers are restored, and the program returns.

AC1
15 3 2

Not Used BCD

15
ACO

BCD BCD BCD BCD Input

5-Digit BCD Number

BCDBIN Subroutine Conversion

15
ACO

Binary Number Output

4-47

fit
BCD-to- Binary Conversion

FLOW CHART

(BCDSIN
J

PUSHAC2.AC3
AND FLAGS
ONTO STACK

LOAD AC3
WITHTBL2

(BCD 1 V

F.XCHANQb
ACDANDAC1

Save contents of AC2, AC3,
and flags

Clear AC2

Load AC3 with address

of look-up table 2

Set carry

{ BCD 5 j

SHIFT ACO
RIGHT 1 BIT

3 4 ^

ADD BINARY
NUMBER TO AC2

Is ACO = 0?

Is ACO Bit = 1?

Increment table pointer

Get next bit

Add the number from the table

to the sum in AC2

C BCD b
J

LOAD AC3
WITHTBL1

I
EXCHANGE ACO

ANDAC1

C BCD1 J

COPY AC2 TO
ACO

I
PULL FLAOS,
AC3.ANDAC2

C RETURN
J

Clear carry

Load AC3 with the address of

look-up table 1

Restore flags, AC3, and AC2

4-48

^
PROGRAM LISTING

BCD-to- Binary Conversion

l

2
3

4

5
6

7

8
9

10
11

IS
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
000A
000B
000C
000D
000E
000F
0010
001 1

0012
0013
0014
0015
0016
0017
0018
0019
001A
001B
00 1C
001D
001E
001F
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
002A
002B
002C

0000
0001
0002
0003
0007
000A
6200
6300
0C00
5200
CD24
3780
6D00
4106
4303
7B01
2C02
19FB
EB00
19FB
4A01
1903
3700
CD06
19F3
5C80
1000
6700
6600
8000
0019
0001
0002
0004
0008
000A
0014
0028
0050
0064
00C8
0190
0320
03E8
07D0
0FA0
1F40
002A
2710
4E20
9C40
0000

BCD TO

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

A
A
A

T
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
T
A
A
A

AC0
AC1
AC2
AC 3

CRY
CARRY
BCDBIN;

BCDl:
BCD2:

BCD3:

BCD4:

BCD5:

CLRCRYl

EXIT:

TBLl:

TBL2

:

PUSH
PUSH
PUSHF
LI
LD
SFLG
RXCH
BOC
BOC
AISZ
SHR
JMP
ADD
JMP
BOC
JMP
PFLG
LD
JMP
RCPY
PULLF
PULL
PULL
RTS
• WORD
• WORD
• WORD
• WORD
• WORD
• WORD
• WORD
• WORD
• WORD
• WORD
• WORD
• WORD
• WORD
• WORD
• WORD
.WORD
• WORD
• WORD
• WORD
• WORD
• WORD
• END

BINARY

1

2

3

7

10
AC2
AC3

AC2*0
AC3*TBL2
CRY
AC0,AC1
1>BCD5
3*BCD4
AC3*1
AC0* 1*0
BCD2
AC2*0<AC3>
BCD3
CARRYjCLRCRY
EXIT
CRY
AC3*TBL1
BCDl
AC2..AC0

AC3
AC2

+ 1

1

2

4

8

10
20
40
80
100
200
400
800
1000
2000
4000
8000
. + 1

10000
20000
40000

SAVE AC2 ON STACK
SAVE AC3 ON STACK
SAVE FLAGS
CLEAR AC

2

LOAD ADDRESS OF LOOKUP
SET CARRY = 1

EXCHANGE AC0 AND AC 1

BRANCH IF AC0 =

BRANCH IF AC0 BIT = 1

INCREMENT TABLE POINTER
SHIFT AC0 RIGHT 1 BIT

;ADD BINARY NUMBER

1 BRANCH IF CARRY 1

; CLEAR CARRY
;LOAD ADDRESS OF LOOKUP
*
J

;COPY AC2 TO AC0
; RESTORE FLAGS
.'RESTORE REGISTERS
3

; RETURN
; LOOKUP TABLE 1

; LOOKUP TABLE 2

4-49

H Up/Down BCD Counter

HARDWARE SUMMARY AND PROGRAM DESCRIPTION

SUMMARY

The diagram below shows four DM74190 devices cas-

caded to form a 4-digit up/down BCD counter. For this

application, counting is enabled while the Count Enable

signal is low, and the direction of counting is selected by

the state of the Direction signal. When the Direction

signal is set low to select up-counting, each counter

stage is internally configured to provide the RIPPLE

CLOCK output as a look-ahead carry, and incrementing

of a counter stage occurs when the previous stage is

clocked from 9 to 0. Conversely, when the Direction

signal is set high to select down-counting, each counter

stage is internally configured to provide the RIPPLE

CLOCK output as a look-ahead borrow, and decrementing

of a counter stage occurs when the previous stage is

clocked from to 9. Thus, a RIPPLE CLOCK output is

provided by the last stage when the counter is incre-

mented to the maximum value of 9999 or decremented

to the minimum value of 0000.

COUNT ENABLE,.+0 ENABLE G

DIRECTION
.,

PRESET
INPUT

(LSB)

BIT D"

BIT 1
-

BIT Z -

BIT 3 -

>o
DOWN/UP

LOAD

DATA A

DATA B

DATA C

DATA

"A

C

ID
RIPPLE

D CLOCK
TA «"TLt

O-l
) CLOCK^
CLOCK |

-BIT 0(A)

-BIT KB)

-BIT 2(0

-BIT 3(0)

DM74190

COUNT ENABLEO
^C

PRESET.
INPUT

BIT4-

8IT5-

BITB-

BIT7-

CLOCK

ENABLE

G

DDWN/UP

LOAD

DATA A

DATA B

DATA C

DATA

f>A

°B

°C

OD

RIPPLE

CLOCK

CLOCK

COUNT ENABLE
I

n
DM74180

O
PRESETO

PRESET
INPUT

BIT 8-
BIT9 -

BIT10-

BIT11-

CL0CK

ENABLE G

DOWN/UP

LOAD

DATA A

DATA B

DATAC

DATA RIPPLE

CLOCK

°A -BIT 8 (A)

-BIT 9(B)

-BIT 10(C)

-BIT 11 ID)

CLOCK

DM74190

COUNT ENABLEo
PRESET o

PRESET
INPUT

BIT 12-

BIT 13-

BIT 14-

BIT IB-

CLOCK

ENABLE

G

DOWN/UP

LOAD

0ATA A

DATA B

DATAC
DATA RIPPLE

D CLOCK

•BIT 12(A)

BIT 13(B)

'BIT 14(0

' BIT 15(0)

CAHBY/(

ASSIGNMENTS

The 4-stage up/down BCD counter function may be

implemented with PACE as a multiple-entry subroutine.

The flowchart and program listing that follow assume

that a memory location is dedicated to storage of the

count, that AC0 is used as a working register for altering

the stored count, and that input/output assignments

are as listed below.

INPUTS:

DM74190

Clear

Load

Count Up
(Count

Enable,

Direction,

Clock)

Count Down
(Count Enable,

Direction,

Clock)

OUTPUTS:

DM74190

0000-9999

RIPPLE CLOCK
(last stage)

PACE

CLEAR entry to Up/Down BCD Count-

er subroutine

PRESET entry to Up/Down BCD
Counter subroutine

INCREMENT entry to Up/Down BCD
Counter subroutine (clock rate is equal

to frequency of calling)

DECREMENT entry to Up/Down BCD
Counter Subroutine (clock rate is equal

to frequency of calling)

PACE

Contents of memory location COUNT
Status Register bit 7 (carry flag)

FUNCTIONAL OPERATION

This program is written as a multiple-entry subroutine

that clears, presets, increments, or decrements a 4-digit

BCD counter. When the subroutine is entered at the

CLEAR address, the contents of AC0 are set to zero, the

carry flag is reset to clear any previous status (see the

preface), and the contents of AC0 are loaded into COUNT
to initialize the stored value to zero. When the subroutine

is entered at the PRESET address, it is assumed that the

desired preset value has already been loaded into AC0 by

the main program so the contents of AC0 are not altered

during execution of the subroutine. Thus, after the carry

flag is reset the contents of AC0 are loaded into COUNT
to initialize the stored count to some value between

000010 and 999910-

The INCREMENT entry to the subroutine is functionally

equivalent to configuring the DM74190 counter for

up-counting. When the subroutine is entered at this

address, the value stored in COUNT is loaded into AC0
after the carry flag is reset; the contents of AC0 are then

incremented by one via a Decimal Add (DECA) + 1

instruction, and the new value is returned to COUNT.

Use of the DECA + 1 instruction allows the stored count

to be treated as a 4-digit decimal number and the

carry flag to be set when AC0 is incremented from

999910 to 0000 10-

4-50

M
The DECREMENT entry to the subroutine is functionally
equivalent to configuring the DM74190 counter for
down-counting. When the subroutine is entered at this

address, the value stored in COUNT is loaded into AGO
after the carry flag is reset; the contents of ACO are then
decremented by one via a Decimal Add (DECA) -1
instruction, and the result is tested via a Branch-On-
Condition (BOC) instruction. If the new value in ACO
equals zero, the carry flag is set to indicate that ACO has
been decremented to the minimum value; if the new

Up/Down BCD Counter

value in ACO is not equal to zero, the carry flag is

allowed to remain reset. The new value in ACO is then
returned to COUNT and the subroutine is exited with
the carry flag in the appropriate state.

Since the carry flag is set by the subroutine only when
the stored count is.incremented or decremented to zero,
it can be tested upon return to the main program to
detect completion of a normal count sequence.

FLOWCHART

C CLEAR

J

C PRESET
J ».

(INCR
J

I
LOAD COUNT
INTO ACO

DECIMAL ADO
1 TO ACO

(RETURN
J

Clear ACO

Clear carry

Load the previous count

Add 1 to the count

Load the previous count

Subtract 1 from the count

Is the count = 0?

Set the carry

4-51

^
PROGRAM LISTING

Up/Down BCD Counter

1
• UP-DOWN BCD COUNTER

2 0000 AC0 =

'3 0007 CRY S 7

4 0000 5000 A CLEAR: LI AC0J0

5 0001 3700 A PRESET: PFLG CRY

6 0002 1908 A JMP EXIT

7 0003 C10B A INCR: LD AC0* COUNT

8 0004 3 700 A PFLG CRY
9 0005 890A A DECA AC0*ONE

10 0006 1904 A JMP EXIT

11 0007 C107 A DECR: LD AC 0# COUNT

12 0008 3700 A PFLG CRY
13 0009 8907 A DECA AC0*MINONE
14 000A 4102 A BOC 1, SETCRY
15 000B D103 A EXIT: ST AC0* COUNT
16 000C 8000 A RTS
17 0.0 0D 3780 A SETCRY: SFLG CRY
18 000E 19FC A JMP EXIT
19 000F 0000 A COUNT: .WORD
20 0010 0001 A ONE: .WORD 1

21 0011 9999 A MINONE: .WORD 09999
22 0000 • END

iSET AC0 -

;SET CARRY =

9

;LOAD COUNT INTO AC0
;SET CARRY =

; DECIMAL ADD 1 TO AC0
;

iLOAD COUNT INTO AC0
; SET CARRY =

; DECIMAL ADD -1 TO AC0
J BRANCH IF AC0 =

; STORE AC0 IN COUNT
; RETURN
J SET CARRY = 1

•
*

; COUNTER SAVE
; CONSTANT
; 10'S COMPLEMENT -1

4-52

^ MSI DM54/DM74190,LS190,191,LS191

Synchronous Up/Down Counters with Mode Control

General Description

These circuits are synchronous, reversible, up/down
counters. The 191 and LS191 are 4-bit binary counters

and the 190 and LS190 are BCD counters. Synchronous
operation is provided by having all flip-flops clocked
simultaneously, so that the outputs change simultan-

eously when so instructed by the steering logic. This

mode of operation eliminates the output counting
spikes normally associated with asynchronous (ripple

clock) counters.

The outputs of the four master-slave flip-flops are

triggered on a low-to-high level transition of the clock

input, if the enable input is low. A high at the enable

input inhibits counting. Level changes at either the

enable input or the down/up input should be made
only when the clock input is high. The direction of

the count is determined by the level of the down/up
input. When low, the counter counts up and when
high, it counts down.

These counters are fully programmable; that is, the
outputs may be preset to either level by placing a low on
the load input and entering the desired data at the data

inputs. The output will change independent of the level

of the clock input. This feature allows the counters to be
used as modulo-N dividers by simply modifying the count
length with the preset inputs.

The clock, down/up, and load inputs are buffered to

lower the drive requirement; which significantly reduces

the number of clock drivers, etc., required for long

parallel words.

Two outputs have been made available to perform the

cascading function: ripple clock and maximum/minimum
count. The latter output produces a high-level output
pulse with a duration approximately equal to one com-
plete cycle of the clock when the counter overflows or

underflows. The ripple clock output produces a low-level

output pulse equal in width to the low-level portion of

the clock input when an overflow or underflow condition

exists. The counters can be easily cascaded by feeding

the ripple clock output to the enable input of the

succeeding counter if parallel clocking is used, or to the

clock input if parallel enabling is used. The maximum/
minimum count output can be used to accomplish
look-ahead for high-speed operation.

Features

Counts 8-4-2-1 BCD or binary

Single down/up count control line

Count enable control input

Ripple clock output for cascading

Asynchronously presettable with load control

Parallel outputs

Cascadable for n-bit applications

TYPE

190,191

LS190, LS191

AVERAGE
PROPAGATION

DELAY

20 ns

20 ns

TYPICAL
CLOCK

FREQUENCY

25 MHz
25 MHz

TYPICAL
POWER

DISSIPATION

325 mW
100 mW

Connection Diagram

INPUTS OUTPUTS INPUTS

Vcc

DATA
A CLOCK

RIPPLE

CLOCK
MAX/
MIN

DATA
C

DATA
D

ENABLE DOWN/
G UP

GND

INPUT OUTPUTS INPUTS OUTPUTS

Asynchronous Inputs: Low input to load sets QA = A, QB » B, Q = C, and D = D

54190/74190(J), <N), (W); 54LS190/74LS190U), (N), <W);
54191/74191 (J), (N), (Wh 54LS191/74LS19KJ), (N), (W)

4-53

^ Up/Down Binary Counter

HARDWARE SUMMARY AND PROGRAM DESCRIPTION

SUMMARY ASSIGNMENTS

The diagram below shows how four DM74191 devices are

cascaded to form a 16-bit up/down binary counter. For

this application, counting is enabled while the Count

Enable signal is low, and the direction of counting is

selected by the state of the Direction signal. When the

Direction signal is set low to select up-counting, each

counter stage is internally configured to provide the

RIPPLE CLOCK output as a look-ahead carry, and

incrementing of a counter stage occurs when the previous

stage is clocked from 15 to 0. Conversely, when the

Direction signal is set high to select down-counting, each

counter stage is internally configured to provide the

RIPPLE CLOCK output as a look-ahead borrow, and

decrementing of a counter stage occurs when the previous

stage is clocked from to 15. Thus, a RIPPLE CLOCK
output is provided by the last stage when the counter is

incremented to the maximum value of FFFF or decre-

mented to the minimum value of 0000.

COUNT ENABLE.

PRESET
INPUT

=+0 ENABLE G
DIRECTION.

DOWN/UP

"""'-M LOAD

— DATA A

DATA 8

DATA C

fc DATA

ILSB)

BIT a'

BIT1'

BIT 2

BIT 3

Oa

«B

H
Id

RIPPLE

CLOCK

-•BIT 0(2°)

—BIT 1 I2
1

]

-BIT2(22
)

-+ BIT 3 (2
3

)

COUNT ENABLE
c

CLOCK a
DM74191

o

PRESET
INPUT

BIT4-

BIT5-

BIT 6-

BIT 7.

CLOCK

ENABLE

G

DOWN/UP

O LOAD

0ATA A

DATA B

DATA C

DATA

lA

IB

lie

UD

RIPPLE

CLOCK

CLOCK h

-BTMB'l
—BIT 5 <2

5
)

— BIT B(26)

BIT7(2 7
)

COUNT ENABLE

.

^O ENABLE G
DIRECTION

PRESET.
INPUT

BIT 8 -

BIT9 -

BIT 10-

BIT11-

D0WN/UP

*O|L0AD A

DATA A QB

DATA B ttc

DATA C Qq

DATA RIPPLE

D CLOCK

- BITS (2
8

>

- BIT 9 (2
9

)

.BIT 10(2'°)

BIT 11(2"!

COUNT ENABLE
c

CLOCK

DM74191

*o

PRESET
INPUT

BIT 12-

BIT 13-

BIT 14-

B1T15-

CL0CK

ENABLE G

DOWN/UP

LOAD Ofl

DATA A B

DATA B dc

DATA C D

DATA RIPPLE

D CLOCK
CARRY/BORROW

The 16-bit up/down binary counter function may be

implemented with PACE by a multiple-entry subroutine.

The flowchart and program listing that follow assume

that a memory location is dedicated to storage of the

count, that AC0 is used as a working register for altering

the stored count, and that input/output assignments are

as listed below.

INPUTS:

DM74190

Clear

Load

Count Up
(Count Enable,

Direction,

Clock)

Count Down
(Count

Enable,

Direction,

Clock)

OUTPUTS:

DM74190

0000-9999

RIPPLE CLOCK
(last stage)

PACE

CLEAR entry to Up/Down Binary

Counter subroutine

PRESET entry to Up/Down Binary

Counter subroutine

INCREMENT entry to Up/Down Bi-

nary Counter subroutine {clock rate is

equal to frequency of calling)

DECREMENT entry to Up/Down Bi-

nary Counter subroutine (clock rate is

equal to frequency of calling)

PACE

Contents of memory location COUNT
Status Register bit 7 (carry flag)

FUNCTIONAL OPERATION

This program is written as a multiple-entry subroutine

that clears, presets, increments, or decrements a binary

counter. When the subroutine is entered at the CLEAR
address, the contents of AC0 are set to zero, the carry

flag is reset to clear any previous status (see the preface),

and the contents of AC0 are loaded into memory-location

COUNT to initialize the stored value to zero. When the

subroutine is entered at the PRESET address, it is as-

sumed that the desired preset value has already been

loaded into AC0 by the main program so the contents

of AC0 are not altered during execution of the subroutine.

Thus, after the carry flag is reset, the contents of AC0
are loaded into COUNT to initialize the stored count to

some value between 0000 and FFFF.

The INCREMENT entry to the subroutine is functionally

equivalent to configuring the DM74191 counter for up-

counting. When the subroutine is entered at this address,

the value stored in COUNT is loaded into AC0; the

contents of AC0 are then incremented by one via an

ADD + 1 instruction, and the new value is returned to

COUNT. Use of the ADD + 1 instruction enables the

stored count to be treated as a 16-bit number and the

carry flag to be set when AC0 is incremented from

FFFF to 0000.

4-54

^ Up/Down Binary Counter

The DECREMENT entry to the subroutine is fur

equivalent to configuring the DM74191 co

down-counting. When the subroutine is enter

address, the value stored in COUNT is loaded

the carry flag is set high, and the contents o'

decremented by one via an AISZ —1 instructic

the AISZ -1 instruction automatically tests

for zero but does not affect the state of the c

If the result is not zero, a PFLG CRY insti

executed to reset the carry flag; the new value

FLOWCHART

ictionally

jnter for

3d at this

nto ACO,
ACO are

n. Use of

the result

arry flag,

uction is

in ACO is

then returned to COUNT to complete the subroutine.

If the result is zero, the PFLG CRY instruction is skipped

and the subroutine is exited with the carry flag set after

the new value in ACO is returned to COUNT.

Since the carry flag is set by the subroutine only when
the stored count is incremented or decremented to zero,

it can be tested upon return to the main program to

detect completion of a normal count sequence.

Clear ACO

Clear carry

Load the previous count

Add 1 to the count

Load the previous count

Set the carry

Subtract 1 from the count

Is the count = 0?

Clear the carry

Save the count

CLEAR

SET ACQ -D

' '

SET CRY

'

INCR

LOAD COUNT
INTO ACO

I

ADO I

TOACO

DECR

LOAD COUNT
INTO ACO

1

SET CRY -1

1

ADD -1

TOACO

"T AC0 = O j;

Tno

. YES „

SET CRY ¥

EXIT
'

•

STORE ACO
IN COUNT

RETURN

4-55

~M Up/Down Binary Counter

PROGRAM LISTING

1
•
* UP-DOWN BINARY COUNTER

2 0000 AC0 =

3 0007 CRY = 7

4 0000 5000 A CLEAR: LI AC0..0 ;SET AC0 .-

5 0001 3700 A PRESET: PFLG CRY ;RET CARRY 1 =

6 0002 1907 A JMP EXIT •

7 0003 CI 08 A INCR: LD AC0* COUNT ;load count into ac
8 0004 E108 A ADD AC0*ONE ;ADD l TO AC0
9 0005 1904 A JMP EXIT *

10 0006 C105 A DECR: LD AC0*COUNT ;load count into ac
11 0007 3780 A SFLG CRY J SET CARRY = 1

12 0006 78FF A AISZ AC0>-1 ;ADD -1 TO AC0 SKIP
13 0009 3700 A PFLG CRY ;SET CARRY
14 000A D101 A EXIT: ST AC0j COUNT ; STORE AC0 IN COUNT
15 000B 8000 A RTS ; RETURN
16 000C 0000 A COUNT: • WORD ; COUNTER SAVE
17 000D 0001 A ONE: • WORD 1 ; CONSTANT
18 0000 • END

IF

4-56

Chapter4
THE SIMULATIONS

Part 2: SUBSYSTEMS

Digital Servo

HARDWARE SUMMARY AND PROGRAM DESCRIPTION

SUMMARY

The diagram below shows a 16-bit up/down binary

counter interconnected with a 16-bit magnitude com-

parator to form the control logic for a digitally-controlled

servo. (Operation of the counter and comparator is

covered on pp. 4-53 to 4-56 and 4-28 to 4-30). For this

application, the control logic is implemented for posi-

tion control. When power is first turned on, the low-

going Initialize pulse sets the Input flip-flop to hold the

counters reset and the A > B output high, thereby

causing the external servo element to be driven to the

zero reference position. When the external servo element

reaches the zero reference position, the Input flip-flop

is reset, and the low-going Home Ready pulse and

normal operation of the servo are enabled over the

complete range of 0000 through FFFF. (It is assumed

that the external servo element provides one clock pulse

for each increment of motion in either the up or down

direction.) With normal operation enabled, the A > B,

A < B, and A = B outputs serve to drive the servo

element to the position indicated by the 16-bit Position

input. If, for example, the Position input is a greater

value than the output of the counter, the A < B output

causes the servo to be driven in the up direction and the

resultant clock input is applied as an up clock to the

counter; when the counter is subsequently counted-up

to the Position value, the A < B output goes low and the

A = B output goes high to stop servo motion. The servo

then holds its current position until the value of the

Position input is increased or decreased to move the

servo element up or down, respectively.

HOME READY

INITIALIZE

£D—'

Li>^
UP COUNT CARRY

DM74193

DOWN COUNT BORROW

oD Qc aB gA

CLEAR

UP COUNT CARRY
DM74193

DOWN COUNT BORROW

Qp °c Ob "a

BIT

0,

(LSB)BITO.

AO

A1

A2

A3

A>B
A<B

A = B

BO

B1

B2

B3

A>B
A<B

A

CLEAR

UP COUNT CARRY
DM74193

DOWN COUNT BORROW

Op nC ttB °A

0M7485
AO

A1

A2

A3

A>B
A<B

A-B

BD

B1

B2

B3

A>B

A<B

A

UP COUNT
DM74193

DOWN COUNT

Op Qc °B °A

AD

A1

A2

A3

A>B
A<B

A-B

B0

> B1

• B2

> B3

A>B

A<B
A-

AO

A1

A2

A3

• A>B
» A<8

. A-B

> Bl

• 112

>B3

A>B
A<B
A-B

4-59

Digital Servo

ASSIGNMENTS

The digital servo function may be implemented with
PACE by a single-entry subroutine. The flowchart and
program listing that follow assume that memory locations

are dedicated to storage of the current and desired servo

positions, that accumulator AC1 is used as an input data

register for entry of the desired servo position and also

as a working register (along with accumulator ACO) to

determine when the servo is at the desired position, and
that input/output signal assignments are as listed below.

HARDWARE
CONFIGURATION

Clock

A>B
A<B
A = B

PACE

JC15
Flag 13 set (drive servo down)
Flag 14 set (drive servo up)

Flag 13 and 14 reset (stop servo)

FUNCTIONAL DESCRIPTION

Two versions of the digital servo subroutine are provided.

The first version uses the 16-bit Comparator routine

(COMP16), described on pp. 4-28 to 4-30, to illustrate a

building-block approach to subroutine generation. The
second version performs the comparison within the servo

subroutine; this version serves to show some of the

options available to the programmer in any given applica-

tion. The assignments specified above are valid for both
versions of the servo subroutine.

After the results of the comparison are stored in ACO,
bit of ACO is tested for the high state to determine

whether the two values were equal.

If bit is high, the servo is at the desired position, and
the subroutine is exited after the original contents of ACO
are restored from the stack; flags 13 and 14 are pulsed

reset to ensure that servo motion is inhibited.

If bit Oof ACO is low, bit 1 is tested to determine whether
the servo needs to be driven up or down. Flag 13 or 14

is then set to enable downward or upward motion,

respectively, and the JC15 input is tested to detect the

positive-going edge of the resultant clock input. Upon
detection of the positive-going clock edge, the contents

of OLD are incremented or decremented as appropriate,

and the subroutine returns to the LOOP address. The
"compare and count loop" is then repeated continuously

until the servo arrives at the desired position (i.e., the

contents of OLD are the same as the contents of NEW).
When this occurs, bit of ACO will be high following the

return from the COMP16 subroutine, and the compare
and count loop will be terminated by the resultant branch

to the EXIT address. The original contents of ACO will

then be restored from the stack, flags 13 and 14 will be

reset to terminate servo motion, and a return to the main
program will be effected via an RTS instruction.

Upon entry to the first digital servo subroutine

(SERV01), the contents of ACO are saved on the stack

(so that they can be restored at the end of the subroutine)

and the contents of AC1 are loaded into memory-location
NEW (which frees AC1 for use as a working register).

The contents of OLD and NEW are then loaded into ACO
and AC1, respectively, and the COMP16 subroutine is

called to compare the two values. When the COMP16
subroutine is completed, the results of the comparison
will be stored in ACO as follows:

Bit of ACO will be high if the two values were
equal.

Bit 1 of ACO will be high if the value in ACO was
greater than the value in AC1

.

Bit 2 of ACO will be high if the value in ACO was
less than the value in AC1

.

The second digital servo subroutine (SERV02) is similar

to the first except for the comparison function, which is

now performed within the subroutine. This is accom-
plished by twos-complementing AC1 after ACO is stored

on the stack, then loading OLD into ACO and adding the

contents of ACO and AC1 together. In effect, this is a

standard binary subtraction, one which does not alter

the contents of AC1. If the result of the subtraction

(stored in ACO) is zero, it indicates that the servo is at

the desired position. Similarly if the result is not zero,

the state of the carry flag indicates whether the servo

needs to be driven up (carry flag reset because ACO <
AC1) or down (carry flag set because ACO > AC1).
Thus, after the subtraction is performed, the SERV02
subroutine tests ACO for zero and/or the state of the

carry flag to control servo motion in the same manner
as described above for the SERV01 subroutine.

4-60

#
FLOW CHART, SERVO 1

Digital Servo

f servo i

j

PUSH AGO
ONTO STACK

Save contents of ACO on stack

STORE AC1

IN NEW

LOAD NEW IN

AC1. LOAD OLD
IN ACO

iS l+-

T
PULLACOOFF

STACK

Save new count

Load old and new counts

Compare OLD and NEW

Exit if they are equal

New count < old count?

Set drive-up flag

- Wait for clock transition

Set drive-down flag

Wait for clock transition

Restore ACO

SETFL13-0
FL14 =

(RETURN
J

Clear up-and-down drive control

4-61

«
FLOW CHART, SERVO 2

Digital Servo

f SERVO 2
J

PUSH ACQ ONTO
STACK

L
2'SCOMPLEYIENT

AC1

l

LOOP , '

LOAD OLD
INTO ACO

1
ADDAC1 AND
ACO. STORE

RESULT IN ACO

C^ ACO =
J>

JC15 = 1

NO

Save contents of ACO on stack

Complement the new count in AC1
Load the old count into ACO

Add old count and complemented
new count

exit) Exit if OLD and NEW are equal

Is new count < old count?

Set drive-up flag

• Wait for clock transition

Set drive-down flag

> Wait for clock transition

(
EXIT

)

4

PULL ACO
OFF STACK

I

SETFL13-
iETFL14 =

4

(
RETURN

)

Restore ACO

Clear up-and-down drive control

4-62

^
PROGRAM LISTING, SERVO 1

Digital Servo

1 9 DIGITAL SERVO
2 0000 AC0 = a

3 0001 AC1 SB , l

4 000A CRY = t0

5 000D FL13 = 13

6 000E FL14 = 14

7 000F JC15 = 15

8 . GLOBL C0MP16
9 0000 6000 A SERVO: PUSH AC0

10 0001 D515 A ST AC 1* NEW
1 1 0002 C514 A LOOP! LD AC1/MEW
12 0003 CI 14 A LD AC0iOLD
13 0004 1401 X JSR COMP16
14 0005 430D A BOC 3* EXIT
15 0006 4406 A BOC 4, LESS
16 > NEW COUNT GREATER
17 0007 3E80 A SFLG FL14
18 0008 4FFF A BOC JC15* .+0

19 0009 4F01 A BOC JC15> .+2

20 000A 19FE A JMP • -1

21 000B 8D0C A ISZ OLD
22 000C 19F5 A JMP LOOP
23 > NEW COUNT LESS TH
24 000D 3DS0 A LESS: SFLG FL13
25 000E 4FFF A BOC JC15* .+0

26 000F 4F01 A BOC JC15>.+2
27 0010 19FE A JMP .-1

28 001 1 AD0 6 A DSZ OLD
29 0012 19EF A JMP LOOP
30 0013 6400 A EXIT: PULL AC0
31 0014 3D00 A PFLG FL13
32 0015 3E00 A PFLG FL14
33 0016 8000 A RTS
34 0017 0000 A NEW: • WORD
35 0018 0000 A OLD: .WORD
36 0000 • END

J CARRY
J DRIVE DOWN FLAG
i DRIVE UP FLAG
;clock
; 16 bit comparator
;save ac0 on stack
;save new count
;load ac1 with new
jload ac0 with old
; compare new and old
j exit if equal
;branch if new < old

tham old count
;set drive up flag
;wait for clock to go lo
j wait for clock to go hi

j increment old by 1

jcontinue assume no skip
*n old count

;set drive down flag
j wait for clock to go lo
j wait for clock to go hi

>

; DECREMENT OLD BY 1

JCONTINUE IF OLD NOT
RESTORE AC0
i CLEAR DRIVE DOWN FLAG
; CLEAR DRIVE UP FLAG
> RETURN
J NEW COUNT
J OLD COUNT

PROGRAM LISTING, SERVO 2

1 J DIGITAL SERVO
2 0000 AC0 =

3 0001 AC1 = 1

4 000A CRY = 10

5 000D FL13 = 13

6 000E FL14 = 14

7 000F JC15 = 15

8 0000 6000 A SERVO: PUSH AC0
9 0001 7101 A CAI AC1.I

10 0002 CI 13 A LOOP: LD AC0>OLD
11 0003 6840 A RADD AC1*AC0
12 0004 410D A BOC 1>EXIT
13 0005 4A06 A BOC CRY..LESS
14 i NEW COUNT GREATER
15 0006 3E80 A SFLG FL14
16 0007 4FFF A BOC JC15> .+0

17 0008 4F01 A BOC JC15# .+2

18 0009 19FE A JMP .-1

19 000A 8D0B A ISZ OLD
20 000B 19F6 A JMP LOOP
21 9 NEW COUNT LESS TH
22 000C 3D80 A LESS: SFLG FL13
23 000D 4FFF A BOC JC15* .+0

24 000E 4F01 A BOC JC15* .+2

25 000F 19FE A JMP .-1

26 0010 AD05 A DSZ OLD
27 001 1 19F0 A JMP LOOP
28 0012 6400 A EXIT: PULL AC0
29 0013 3D00 A PFLG FL13
30 0014 3E00 A PFLG FL14
31 0015 8000 A RTS
32 0016 0000 A OLD: • WORD
33 0000 • END

J CARRY
; DRIVE DOWN FLAG
J DRIVE UP FLAG
; CLOCK
; SAVE AC0 ON STACK
;2S COMPLEMFNT NEW COUNT
JLOAD OLD COUNT INTO AC0
JCAC0) - (AC1) -> CAC0)
J EXIT IF NEW = OLD
; BRANCH IF NEW < OLD

THAN OLD COUNT
;SET DRIVE UP FLAG
J WAIT FOR CLOCK TO GO LO
;WAIT FOR CLOCK TO GO HI

t

J INCREMENT OLD BY 1

JCONTINUE ASSUME NO SKIP
VN OLD COUNT

J SET DRIVE DOWN FLAG
J WAIT FOR CLOCK TO GO LO
JWAIT FOR CLOCK TO GO HI

}

; DECREMENT OLD BY 1

JCONTINUE IF OLD NOT
JRESTORE AC0
J CLEAR DRIVE
J CLEAR DRIVE
J RETURN
SOLD COUNT

DOWN FLAG
UP FLAG

4-63

H Digital Tachometer

HARDWARE SUMMARY AND PROGRAM DESCRIPTION

SUMMARY

The diagram below shows a 16-bit binary counter inter-

connected with a 16-bit magnitude comparator and a

sequence-logic-and-timer circuit to form a digital tach-

ometer. (Operation of the counter and comparator
is covered on pp. 4-34 to 4-36 and 4-28 to 4-30.) For
this application, the counter is enabled to count for a

fixed interval by the Count Interval Select output of

the sequence-logic-and-timer circuit, then the resultant

output of the counter is compared with the high- and
low-limit reference inputs to indicate whether the input

was over, under, or within the range selected.

SEQUENCE LOGIC
AND TIMER

DETECT OVER LIMIT

I DM747S

-I C 5

¥
ENABLE '

' i'

(LSB)

BITJL

BIT 2

BIT 3.

LOW
LIMIT

BIT 2

BIT3,

DETECT UNDER LIMIT

COUNT INTERVAL SELECT

ENABLE^

LOW
LIMIT

i_i

ENABLE^ -

BIT 1 3

BIT 11,

"1"

u
CLOCK CLEAR ENABLE

ENABLE

T

CARRY
DM74163

Q Q c Q B QA

CLOCK CLEAR ENABLE
P

NABLET CARRY
DM74163

Qp Qc Qb qA

(LS8)

BIT.

D

BIT y
BIT 2.

BIT 3,

2 ±
CLOCK CLEAR ENABLE

ENABLE T CARRY
0M741B3

Qp Qc QB QA

|
DM7475

-4 ».C 0"

li
CLOCK CLEAR ENABLE

Qp Qc Qb qa

OUT

OUT

OUT

t~LT i_r
COUNT INTERVAL

SELECT

BIT 13

BIT 14,

4-64

Digital Tachometer

ASSIGNMENTS

The digital tachometer function may be implemented

with PACE as a single-entry subroutine. The flowchart

and program listing that follow assume that the PACE
Level 2 Interrupt input is continuously driven by a low-

going 10/xs clock pulse at a 60 Hz rate, that ACO is used

as a working register for selecting the count interval time

and detecting completion of the counting sequence, that

AC 1 is used as a working register for counting the number

of input pulses received while counting is enabled, and

that input/output assignments are as listed below.

NOTE: The Level 2 and Level 3 Interrupt clock param-

eters can be easily derived using either a one-shot

multivibrator or an edge detector. For a detailed descrip-

tion of PACE interrupt signal requirements, refer to the

material on PACE'S interrupt system, which begins

on page 3-2.

INPUTS:

DIGITAL
TACHOMETER PACE

Count Interval TIMER constant (6O10) entered into

Select ACO when subroutine is called by

main program, assuming that Level

2 Interrupt input is continuously

driven by 10/us low-going clock pulse

at 60 Hz rate.

Input Level 3 Interrupt input driven by

10ms low-going clock pulse (maxi-

mum clock frequency is 10 kH?.)

High Limit Contents of memory location MAX

Low Limit Contents of memory location MIN

Reset Automatic upon completion of sub-

routine

decimal value 61 is loaded into memory location TIMER
via ACO, and AC1 in initialized to zero. Then the Inter-

rupt Enable 2 and master interrupt enable flags are set

to enable processing of the 60 Hz, Level 2 Interrupt

clock input.

After the Level 2 and master interrupt enable flags are

set, a "copy status register into ACO/test ACO bit 2"

(Interrupt 2 enable flag) loop is continually executed

until the first Level 2 Interrupt dock is received. Upon

receipt of this input, PACE automatically branches to the

Level 2 Interrupt service routine causing the contents of

memory location TIMER to be decremented to 60 and

the Level 3 Interrupt enable flag to be set to allow count-

ing of the Level 3 Interrupt clock. The Return from

Interrupt (RTI) instruction then causes a return to the

TACH subroutine "copy register into ACO/test bit 2"

loop. Since the Interrupt 2 enable flag was returned true

at the start of the Level 2 Interrupt service routine, the

TACH subroutine loop will be maintained until a sub-

sequent Level 2 or Level 3 Interrupt clock is received.

After the Level 2 Interrupt service routine is executed

for the first time, subsequent Level 2 Interrupt clocks

will cause the contents of memory location TIMER to be

decremented from 60 to zero at a 60 Hz rate to enable

counting of the Level 3 Interrupt clock input for a 1-

second interval. While the contents of memory location

TIMER are greater than zero, the exits from the Level 2

Interrupt service routine occur with the Level 2 and Level

3 Interrupt enable flags set, which reinstate the TACH
subroutine "copy flags into ACO/test ACO bit 2 loop."

Thus, each Level 3 Interrupt clock input will cause

execution of the Level 3 Interrupt service routine to

allow incrementing of AC1 by one and a return to the

TACH subroutine "copy flags into ACO/test ACO bit 2"

loop.

OUTPUTS:

DIGITAL
TACHOMETER

Over Limit

Under Limit

Within Limit

PACE

RETURN exit from subroutine

RETURN + 1 exit from subroutine

RETURN + 2 exit from subroutine

FUNCTIONAL OPERATION

This program is written as a single-entry subroutine that

enables the Level 3 Interrupt clock to be counted for a

1 -second interval, and the result of the count to be com-

pared with predetermined minimum and maximum limits.

Since the subroutine requires that ACO and AC1 be used

as working registers, the first operation of the subroutine

is to push ACO and AC1 onto the stack so that their

original contents can be restored at the end of the sub-

routine. After ACO and AC1 are saved on the stack.

When the contents of memory location TIMER are

decremented to zero at the end of the 1 second counting

interval, the return from the Level 2 Interrupt service

routine occurs with both the Level 2 and Level 3 Inter-

rupt flags reset to disable counting. Thus, the "copy flags

into ACO/test ACO bit 2" loop is terminated upon return

to the TACH subroutine. The Level 3 Interrupt clock

count stored in AC1 is then loaded into ACO and ACO is

compared with the maximum limit stored in memory-

location MAX. If the contents of ACO are greater than

the maximum limit, ACO and AC1 are pulled from the

stack to reinstate the original contents, and the sub-

routine is exited via a Return (RTS) instruction to

provide an over-limit indication to the main program.

If the contents of ACO are less than the maximum limit,

the contents of memory location MIN are subtracted

from ACO to provide an under-limit (RTS + 1) or

within-limit (RTS + 2) return to the main program

(after ACO and AC1 are pulled from the stack to rein-

state their original contents).

4-65

M Digital Tachometer

FLOWCHART

(TACH
J

PUSH ACO.

AC1 ONTO
STACK

Save contents of ACO and AC1 on stack

Load ACO with timer constant

STORE ACO
IN TIMER

Store constant into timer

Clear AC1

Enable interrupt 2

SET IEN -

1

1

_ YES

T1 *

'

COPY FLAGS
TO ACO

y a ;o ^^

PULL ACt AND
ACQ OFF STACK

Enable interrupts

Put flag into ACO

Is interrupt service routine timed out?

Put pulse count into ACO

Is count greater than maximum limits?

Restore AC1 and ACO

(RETURN
j Count Over return

4-66

to Digital Tachometer

FLOW CHART (Continued)

©
SUBTRACT MIN

FROM AM

YES k

[NO

i

PULL ACO,

ACt OFF STACK

RETURN tl
J

T3^

PULL ACO.

AC1 OFF STACK

RETURN +Z
J

(ACO) *- (ACO) - (Min)

Is count less than minimum limits?

Restore ACO and AC1

Count Under return

Restore ACO and AC1

Count OK return

(INTR2
J

RESET IE2-0.
ENABLE IE2-1
ENABLE IE3-1

Interrupt 2 service routine

Reset and enable interrupt 2 and

enable interrupt 3

(INTERRUPT "\

RETURN J

Decrement 1 second timer

Is timer zero?

Reset interrupts 2 and 3

(INTR3)

RESET IE3-0
ENABLE IE3-1

Interrupt 3 service routine

Reset and enable interrupt 3

C INTERRUPT "\

V RETURN J

Add 1 to pulse count

4-67

M Digital Tachometer

PROGRAM LISTING

1 i DIGITAL TACHOMETER
2 0000 AC0 =

3 0001 AC1 = 1

4 0002 IE2 = 2 ; INTERRUPT 2
5 0003 IE3 = 3 INTERRUPT 3
6 0009 I EN = 9 ; INTERRUPT ENABLE
7 0041 MIN = 041 ;MINIMUM LIMIT ADDRESS
8 0042 MAX = 042 ;MAXIMUM LIMIT ADDRESS
9 0000 6100 A tach: PUSH AC1 J SAVE REGISTERS ON STACK

10 0001 6000 A PUSH AC0 3

11 0002 503D A LI AC0..61 iSET AC0 = 61 (DECIMAL)
12 0003 Dl IF A ST AC0, TIMER ; STORE AC0 IN TIMER
13 0004 5100 A LI AC1..0 ; CLEAR RPM COUNTER
14 0005 3280 A SFLG IE2 ; ENABLE IE2
15 0006 3980 A SFLG I EN J ENABLE INTERRUPTS
16 0007 0400 A Tl : CFR AC0 ;COPY FLAGS TO AC0
17 0008 46FE A BOC 6>T1 i TIMER FINISHED?
18 0009 5C40 A RCPY ACUAC0 ;*es> copy aci to ac0
19 000A 9C42 A SKG AC0..MAX ; SKIP IF COUNT > MAX
20 000B 1903 A JMP T2 %

21 000C 6400 A PULL AC0 ;RESTORE REGISTERS
22 000D 6500 A PULL AC1 I

23 000E 8000 A RTS ; COUNT OVER RETURN
24 000F 9041 A T2: SUBB AC0>MIN ; SUBTRACT MIN FROM COUNT
25 0010 4203 A BOC 2>T3 ; BRANCH IF COUNT OK
26 0011 6400 A PULL AC0 i RESTORE REGISTERS
27 0012 6500 A PULL AC1 3

28 0013 8001 A RTS 1 ; COUNT UNDER RETURN
29 0014 6400 A T3: PULL AC0 ; RESTORE REGISTERS
30 0015 6500 A PULL AC1 t

31 0016 8002 A RTS 2 ; COUNT OK RETURN
32 J INTERRUPT 2 SERVICE ROUTINE
33 0017 3200 A INTR2: PFLG IE2 ; RESET IE2
34 0018 3280 A SFLG IE2 ; ENABLE IE2
35 0019 3380 A SFLG IE3 i ENABLE IE3
36 001A AD08 A DSZ TIMER ; DECREMENT TIMER
37 001B 7C00 A RTI ; TIMER NOT ZERO
38 001C 3200 A PFLG IE2 ; TIMER = 0, RESET I E2
39 001D 3300 A PFLG IE3 ; RESET IE3
40 001E 7C00 A RTI ; RETURN
41 i INTERRUPT 3 SERVICE ROUTINE
42 00 IF 3300 A INTR3: PFLG IE3 ; RESET IE3
43 0020 3380 A SFLG IE3 ; ENABLE IE3
44 0021 7901 A AISZ AC 1,1 ;ADD 1 TO PULSE COUNT
45 0022 7C00 A RTI i RETURN
4 6 0023 0000 A TIMER: • WORD iTIME COUNTER
4 7 0000 • END

4-68

M Modulo-N Divider

HARDWARE SUMMARY AND PROGRAM DESCRIPTION

SUMMARY

The diagram below shows a 16-bit binary counter inter-

connected with a 16-bit magnitude comparator to form

a Modulo-N Divider (Operation of the binary counter

and the magnitude comparator is covered on pp. 4-34

to 4-36 and 4-28 to 4-30.) For this application, counting

is enabled when the externally-generated ENABLE signal

is set low to allow the counter to continuously count up
from zero to the value of the Dividy-By-N input to the

comparator. When the output of the counter equals the

Dividy-by-N value, the A = B output of the comparator

goes high for approximately one clock pulse, and the

counter is reset to zero on the positive-going edge of the

next clock pulse to initiate another count cycle. The
A > B output of the comparator ensures that circuit

operation will not be affected should the counter output

be preset to an illegal value when power is first turned on.

^
L_£

CLOCK CLEAR LOAD

ENABILE P

DM74163

ENABLE T CARRY

OlD C QB QA

i I"TOO
CLOCK CLEAR LOAD

ENABLE

P

DM741 63

ENABLE

T

CARRY

°D °C °B °A

(LSB)BITO.

AO

A1

A2

A3

A>B
A = B

A<B

BO

B1

B2

B3 A<B
DM7485

u.
CLOCK CLEAR LOAD

ENABLE

P

DM7416]

ENABLE

T

CARRY

°D °C "B "A

AD

A1

A2

A3

A>B

A-B

A>B

A>B

A-B

A<B
DIH7485

i A:: s a
CLOCK CLEAR LOAD

ENABLE?
DM74163

ENABLE

T

°D "C nB °A

A1

AZ

A3

A>B

A-B

A<B

BO

B1

B2

B3

A>B

A=B

A<B
GM7485

A>B
A-B

A<B
DM7485

•—CLOCK OUT

4-69

~M Modulo-N Divider

ASSIGNMENTS

The Modulo-N Divider function may be implemented

with PACE as a double-entry subroutine. The flowchart

and program listing that follow assume that one memory
location is dedicated to storage of the count, a second

memory location is dedicated to storage of the Divide-

by-N value, that accumulator ACO is used as a working

register for altering the stored count, and that input/

output assignments are as listed below.

the carry again remains low, and the contents of ACO
are set to zero and loaded into COUNT to initialize the

stored count to zero. A new count sequence is initiated

starting with the next subroutine call.

FLOWCHART

INPUTS:

MODULO-N DIVIDER

A > B reset

Count (Enable,

Clock)

Divide-by-N value

OUTPUTS:

MODULO-N DIVIDER

PACE

RESET entry to Modulo-N Di-

vider subroutine

MODULO entry to Modulo-N

Divider subroutine (clock rate is

equal to frequency of calling)

Contents of memory-location

PRESET

PACE

A = B Status Register bit 7 (carry flag)

Counter output Contents of memory-location

COUNT

FUNCTIONAL OPERATION

This program is a double-entry subroutine that either

resets or increments the Modulo-N counter (contents of

memory-location COUNT). Since both entries to the

subroutine employ ACO as a working register, the original

contents of ACO are automatically saved on the stack at

the start of the subroutine and restored at the end of the

subroutine. For the RESET call, the carry flag is reset to

clear any previous status after ACO is saved on the stack

(see the preface); ACO is then set to zero and loaded

into COUNT, which provides a starting value of zero for

the first counting sequence. (Subsequent resetting to

zero of the stored count occurs automatically at the

completion of each counting sequence.)

For the MODULO call, the carry flag is reset, ACO is

loaded from COUNT after being saved on the stack, then

ACO is incremented by one and compared with the

Divide-by-N value stored in memory-location PRESET.
If the two values are equal, the carry flag is set high to

indicate completion of a counting sequence; the contents

of ACO are then set to zero and loaded into COUNT,
which provides a starting value of zero for the next

counting sequence. If the two values are not equal, the

contents of ACO and PRESET are compared a second

time to determine whether a greater value is preset in

ACO. (This second test provides the same function as

the A > B output of the comparator in the hardware

configuration.)

(MODULO
j

PUSH ACO ONTO
STACK

I
Save contents of ACO on stack

Clear the carry

LOAD COUNT
INTO ACO

ADD1 TO COUNT
IN ACO

1

(BESET j h

PUSH ACO
ONTO STACK

SAVE ACO
IN COUNT

Retrieve count

Increment count

Is count equal to preset?

Is count greater than preset?

Set carry to indicate ACO = preset

Save contents of ACO on stack

Clear carry

Clear count

Store reset or incremented count

If the value in ACO is less than the value in PRESET, the

carry remains low, and the contents of ACO are returned

to COUNT; this increments the stored count by one.

A value in ACO greater than the value in PRESET indi-

cates an erroneous counting sequence. For this condition.

PULL ACO OFf
STACK

(RETURN
J

Restore ACO

4-70

Modulo-N Divider

PROGRAM LISTING

1 i MODULO M DIVIDER
s 0000 AC0 =

3 0007 CRY = 7

4 0000 6000 A MODULO! PUSH AC0 ;SAVE AC0 OM STACK
5 0001 3700 A PFLG CRY ;SET CARRY =

6 0002 C10E A LD AC0> COUMT J LOAD COUMT IMTO AC0
7 0003 7801 A AISZ AC0* i ;ADD 1 TO COUMT IM AC0
8 0004 F10D A SKME AC0*PRESET ;AC0 = PRESET VALUE?
9 0005 1903 A JMP EQUAL ; YES
10 0006 9D0B A SKU AC0»PRESET JAC0 > PRESET VALUE?
1 1 0007 1906 A JMP EXIT ;mo
12 0008 1904 A JMP RESET+2 ; YES
13 0009 3 780 A EQUAL: SFL13 CRY J SET CARRY = 1

14 000A 1902 A JMP RESET+2
15 000B 6000 A RESET: PUSH AC0 ; SAVE AC0 OM STACK
16 000C 3700 A PFLG CRY ;SET CARRY =

17 000D 5000 A LI AC0*0 ; CLEAR AC0
18 000E D102 A EX I T

:

ST AC0#COUMT ;SAVE AC0 IM COUVT
19 000 F 6400 A PULL AC0 ; RESTORE AC0 FROM STACK
20 0010 8000 A RTS ; RETURN
21 001 1 0000 A COUMT: .WORD JCUPREMT COUMT VALUE
22 0012 0000 A PRESET: • WORD .'PRESET VALUE
23 0000 • EMD

4-71

to Real-Time Clock and Interval Timer

HARDWARE SUMMARY AND PROGRAM DESCRIPTION

SUMMARY

The diagram below shows a Modulo-N Divider inter-

connected with a time interval selector and a 1 Hz
real-time clock to form an interval timer. This timer

provides intervals that range from 1 second to approxi-

mately 18 hours (in 1 second increments).

For this application, the A = B output of the Modulo-N

Divider goes low ("ON") when the counter is reset by

the Start Count pulse, and it remains low until the

counter is clocked up to the value of the Time Interval

input. When the counter output equals the Time Interval

input, the A = B output of the Modulo-N Divider goes

high ("OFF") to disable the 1 Hz clock input to the

counter, holding the interval timer in the "OFF" state

until the next Start Count pulse is received.

- CLOCK

DM74160

±- r*o

ENABLE

T

ENABLE P

CLOCK

DATA A

OATAB

DATAC

DATA D Od

LOAD CARRY

OM741G0

-°<r-

TIME

INTERVAL
SELECTOR

START.
COUNT IT

U_TIME__
1 INTERVAL

START COUNT

TIME INTERVAL (IN SECOWDSI^ TIMER
CLOCK
>

MODULO
N

DIVIDER r

track of elapsed time, respectively), that the PACE
Level 2 Interrupt input is continuously driven by a low-

going 10/us clock pulse at a 60 Hz rate, and that input/

output assignments are as listed below.

NOTE: The Level 2 Interrupt clock can be easily derived

by buffering and squaring the 60 Hz line input, and edge

detecting either the positive or negative alternation. For

a detailed description of PACE interrupt signal require-

ments, refer to the material that starts on page 3-2.

INPUTS:

REAL-TIME CLOCK
GENERATOR AND
INTERVAL TIMER PACE

60 Hz Clock Level 2 Interrupt input contin-

uously driven by low-going 10/xs

clock pulse at 60 Hz rate

Start Count TIME ON entry to Interval Timer

subroutine

Time Interval Contents of AC3 when subrou-

tine is called by main program

via TIME ON entry

OUTPUTS:

REAL-TIME CLOCK
GENERATOR AND
INTERVAL TIMER

A=B
PACE

Status Register bit 13 (flag 13)

FUNCTIONAL OPERATION

This program is a single-entry subroutine that causes the

flag 13 output of PACE to be held set for a specific

amount of time, which ranges from one second to

approximately 18 hours (in one second intervals). It is

assumed that when the subroutine is called by the main

program the desired time interval has already been

entered into AC3. After flag 13 is set upon entry to the

subroutine the contents of AC3 are loaded into memory-
location CNTR to control the amount of time that flag

13 remains set. AC3 is then set to 60, and the Level 2

Interrupts are enabled to allow the 60 Hz interrupt clock

to be counted-down to the desired timer output.

ASSIGNMENTS

An interval timer function may be implemented with

PACE as a subroutine that is called by the main program

to select a real-time output ranging from one second to

approximately 18.2 hours (in one second increments).

The flowchart and program listing that follow assume

that accumulator AC3 is used as an input data register

and as a working register (for entering the desired time

interval into a dedicated memory location, and keeping

Counting-down of the 60 Hz interrupt clock is accom-

plished by decrementing AC3 each time an interrupt is

detected, until the contents of AC3 equal zero. Each

time the contents of AC3 equal zero, AC3 is reset to

60 and the contents of CNTR are decremented by one.

Thus, CNTR is decremented at a 1 Hz rate until it equals

zero. When CNTR equals zero, flag 13 is reset to termin-

ate the timer output, and Level 2 Interrupts are disabled

to inhibit processing of the Level 2 Interrupt clock until

the TIME "ON" subroutine is called again by the main

program.

4-72

M Real-Time Clock and Interval Timer

FLOWCHART

TIME "ON"

SETFL13-1 Set flag 13

AC3 contains time in seconds

Interrupt 2 entry point

Reset and enable interrupt 2

1

SAVE AC3
IN CNTR

1

SET AC3 = 60

'

(INTR2 \
'

RESET IE2

ENABLE 1E2

I

DECREMENT
AC3 BV 1

,. AC3-0 ^
Nik/" INTERRUPT

' PV RETURN)
Test for zero value

TvES

Test value of CNTR (in main memory)
for zero value. If not zero, return to

main program; if zero, reset flag 13 to

end timer cycle

Clear flag 13 and interrupt 2

Return to main program

SET
AC3-60

\

DECREMENT
CNTR BY 1

CNTR-0
J}

Jyes

. NU ^{ INTERRUPT "\

' *\^ RETURN J

RESET FLI3-0
IE2-0

f INTERRUPT ^
^ RETURN J

PROGRAM LISTING

1 3 REAL riME CLOCK
2 0002 IE2 = 2
3 0003 AC3 = 3

4 000D FL13 = 13
5 0000 3D80 A TIMEOI*: SFLG FL13 J SET FLAG = 1

6 0001 DD0B A ST AC3* CNTR iSAVE SECONDS IM CNTR
7 0002 533C A LI AC3* 60 ; INITIALIZE AC3
8 0003 3200 A INTR2 S PFLG IE2 PRESET INTERRUPT 2

9 0004 3280 A SFLG IE2 ; ENABLE INTERRUPT 2
10 0005 7BFF A AISZ AC3, -1 > DECREMENT AC3 BY 1

11 0006 7C00 A RTI ;not zero, return
12 0007 533C A LI AC3> 60 ;SET AC3 TO 60 (DECIMAL)
13 0008 AD04 A DSZ CMTR ; DECREMENT CNTR BY 1

14 0009 7C00 A RTI J NOT ZERO, RETURN
15 000A 3D00 A PFLG FL13 iCNTR=0* RESET FL13=0
16 000B 3200 A PFLG IE8 i RESET INTERRUPT 2

17 000C 7C00 A RTI i RETURN
18 000D 0000 A CNTR: • WORD ; COUNTER
19 0000 .END

4-73

H Pseudo-Random Number Generation

HARDWARE SUMMARY AND PROGRAM DESCRIPTION

SUMMARY

PACE is readily adapted to pseudo-random number

generation by the application of an asynchronous clock

to one of the Branch Condition inputs. The diagram

below shows a DM74C14 Schmitt Trigger configured as

a square-wave generator, which drives the JC15 input

of PACE. For this application, the Schmitt Trigger RC
network is adjusted to cause the 16-bit numbers generated

by PACE to appear random.

ASSIGNMENTS

The flowchart and program listing that follow assume

that AC1 and ACO are used as working and output data

registers, respectively, and that an external oscillator is

connected to the JC15 input of PACE.

FUNCTIONAL OPERATION

This program is written as a single-entry subroutine that

generates pseudo-random 16-bit numbers. The subroutine

uses the PACE instruction execution time as a fixed

clock, and processes the external oscillator input as a

variable clock; the resulting 16-bit number generated is

a function of the phase angle that exists between the

two clocks at the start of the subroutine.

Since the subroutine requires that AC1 be used as a

working register, the first operation of the subroutine is

to store AC1 on the stack so that its original contents

can be restored at the end of the subroutine. After AC1

is stored on the stack, ACO is initialized to for use as a

random-number generator and AC1 is initialized to 16

for use as a loop counter. The JC15 input to PACE is

then tested via a Branch-On-Condition (BOC) instruction

to cause ACO to be incremented and/or shifted left one

bit at a time. After each shift, the contents of AC1 are

decremented by one and tested for zero. When the

contents of AC1 equal zero, ACO contains a randomly-

generated 16-bit number. AC1 is then pulled from the

stack to restore its original contents and the subroutine

is exited with the randomly-generated 16-bit number

stored in ACO.

4-74

Pseudo-Random Number Generation

FLOWCHART

RANDOM

Save contents of AC1 on stack

AC1 is the loop count

SAVE AC1
ON STACK

\

SET ACO =

SET AC1 = 16

-

LOOP ,

<T JC1S-1

jTno

,. VES „
Flag high?

ADO 1 TO ACO

'

<

'

'

SHIFT ACO
LEFT 1 BIT

1

DECREMENT
AC1 BY 1

e^-<^ci-^> Finished?

Jyes

Restore AC1PULL AC1 OFF
STACK

(
RETURN

J

PROGRAM LISTING

1 .; PSEUDO-•RAMDOM NUMBER GENERATOR
2 0000 AC0 -

3 0001 AC1 1

4 0000 6100 A RANDOM: PUSH AC1 J SAVE AC1 OM STACK
5 0001 5000 A LI AC0*0 ; CLEAR AC0
6 0002 51 10 A LI AC 1 * 1 6 J SET LOOP COUNTER
7 0003 4F01 A LOOP: BOG 15.»R1 ; branch if jci5 = l

8 0004 7801 A AISZ AC0* 1 J ADD 1 TO AC0
9 0005 2802 A Rl: SHL AC0*

1

j JSHIFT ACO LEFT 1 BIT
10 0006 79FF A AISZ AC1*-1 ; DECREMENT AC 1 BY 1

11 0007 19FB A JMP LOOP J

12 0008 6500 A PULL AC1 ; RESTORE AC1 FROM STACK
13 0009 8000 A RTS ; RETURN
14 0000 • END

4-75

« State Sequencer

HARDWARE SUMMARY AND PROGRAM DESCRIPTION

SUMMARY

The logic and state diagrams below show how an 8-bit

binary input may be decoded for state sequencing. Opera-

tion of the logic is controlled by the Initialize input.

When the Initialize input goes low, the Enable flip-flop

is preset to force the State- 1 output of the decode logic

high, and the States 2 through 8 outputs low; this allows

the State Register to be initialized to State 1 on the first

positive alternation of the clock. When the Initialize

input is returned high, the Enable flip-flop is clocked

reset on the next positive alternation of the clock to

enable normal operation of the decode logic. While

enabled, the decode logic continually compares the 8-bit

binary input with the output of the State Register to

detect a valid state change as specified by the sequence

chart. For example, following initialization the high S1

output of the State Register enables the decode logic

to provide a high State-2 output when input bit 2 is high

and input bit 4 is low, or a high State 4 output when
input bit 1 is low and input bit 4 is high; any other

combination of inputs results in all eight outputs of the

decode logic being low. Sampling of the decode logic

output occurs on the positive-going edge of each clock

pulse. If one of the eight possible outputs of the decode

logic is high, the Input Disable signal will be low and the

State Register will be clocked to the new state. If all

eight outputs of the decode logic are low, the Input

Disable signal will be high and the State Register will be

inhibited from changing state.

8_=o
JJD-

M—

I

/ ma I

—

I _^

V INPUT
DISABLE

C IN c0UT

°IN "OUT

INPUT OUTPUT |

DISABLE ENABLE"*
-

4-76

State Sequencer

ASSIGNMENTS FUNCTIONAL OPERATION

The state sequencer function may be implemented with

PACE as a single-entry subroutine. The flowchart and

program listing that follow assume that a memory loca-

tion is dedicated to storage of the current state, that

accumulator AC2 is used as a working register for

detecting the current state, accumulator ACO is used

as an input data register and as a working register (for

entering the 8-bit state-sequence word and changing the

stored state accordingly), and that input/output assign-

ments are as listed below.

INPUTS:

STATE SEQUENCER LOGIC

Initialize

Data

1

2

PACE

Main program storage of State 1

(X'0001) in memory-location

STATE

ACO Bit

1

State Clock

OUTPUTS:

STATE SEQUENCER LOGIC

S1

S2

S3

S4

S5

S6

S7

S8

STATE entry to State Sequencer

subroutine

Contents

STATE =

Contents

STATE =

Contents

STATE =

Contents

STATE =

Contents

STATE =

Contents

STATE =

Contents

STATE =

Contents

STATE =

PACE

of memory-
X'0001

of memory
X'0002

of memory
X'0003
of memory-

X'0004
of memory
X'0005

of memory
X'0006
of memory-
X'0007

of memory-

X'0008

location

location

location

location

location

location

location

location

This program is written as a single-entry subroutine that

processes an 8-bit state sequence input. When the sub-

routine is called, it is assumed that the state sequence

input has already been loaded into ACO. The first step

of the subroutine, therefore, is to push working register

AC2 onto the stack so that the original contents of AC2
can be restored at the end of the subroutine. After AC2
is pushed onto the stack, the address of the State Jump
•table (JMPTBL) is loaded into AC2; AC2 is then incre-

mented by the value stored in memory-location STATE
to cause the subroutine to branch to the corresponding

STATE routine. For example, if the value in memory-
location STATE is X'0001, the subroutine will branch to

the STATE 1 routine; if the value is X'0002 the

subroutine will branch to the STATE 2 routine; and

so forth.

The States 1-8 routines are functionally identical in that

each routine sequentially tests appropriate bits of the

State Sequence input (stored in ACO) to determine

whether a valid state change is indicated. Testing of the

state sequence input bits is accomplished by rotating

ACO right or left as required to locate each significant

bit at ACO bit position 0, 1,2, or 15, then employing

Branch-On-Condition (BOO instructions to detect the

logic states of the significant bits. If a valid state change

is indicated, a branch to an appropriate SET routine

loads the new state into ACO; if a valid state change is

not indicated, the branch path is to the EXIT and the

current state is loaded into ACO from STATE. After the

new or current state is loaded into ACO, AC2 is pulled

from the stack to restore the original contents, and ACO
is stored in STATE to update or retain the stored output.

Upon return to the main program, the State Output will

be present both in ACO and STATE. Thus, the main

program can detect the output state by decrementing

ACO and using Branch-On-Condition (BOO instructions

to select an appropriate branch path for the main pro-

gram when the contents of ACO equal zero.

FLOWCHART

(STATES)

PUSH AC2
ONTO STACK

I
LOAD ADDRESS
OFJUMPTABLE

INTO AC2

Save contents of AC2 on stack

Load the beginning address of the

jump table into AC2

ADO STATE
T0AC2

Add the state for a displacement into

the jump table

IF

STATE
EQUALS

1 2 3 4 5 G 7 8

GOTO
ADDRESS

STATE 1 STATE 2 STATE 3 STATE 4 STATE 5 STATES STATU 7 STATE 8

Jump to appropriate state routine

4-77

w
FLOW CHART (Continued)

State Sequencer

C EXIT I J

(EXIT I)

Position input 2 at bit

Input 4-1?

Input 2- 1?

Input 1=0?

C exiti)

Position input 3 at bit

Input 3- 1?

Input 5=1?

Don't change state

C STATE 3
J

(EXITI)

J Input 1 = 1?

Position input 6 at bit 2

Input 6 = 1?

4-78

^
FLOW CHART (Continued)

State Sequencer

i

Position input 3 at bit

Input 3 = 1?

Position input 7 at bit 1

Input 7 = 1?

Input 8= 1?

f EXIT1
J

D

Position input 7 at bit

Input 7 = 1?

Position input 1 at bit 15

Input 1=1?

Input 4= 1?

C Exit 1)

4-79

*
FLOW CHART (Continued)

State Sequencer

Position input 7 at bit

ACO
BIT 1

YES ,/
set;)

Jno

ACO
BIT 1 -

1

YES ./
SETS

)

Tno

)c
EXIT1

Input 7 = 17

Input 8- 17

(STATE 7 J

ROTATE ACO
RIGHT 6 BITS

(EXIT I J

J

3

Position input 7 at bit

Input 7 - 1?

Input 8= 17

(STATE 8)

>r ACO ^Vj.
\BIT "1/^

Jno

YES

(EXIT 1)

J Input 1 = 1?

4-80

#
FLOW CHART (Continued)

State Sequencer

C s" 1

)

SET ACO -1 ——

#

C SET 2 J

SET ACO -2

(S" 3)

SET ACO -3

(SE" J

SET ACO -4

C s" 6
])

1

SET ACO 9 h
f SETB

)

SET ACO -1

'

("'')

C SETS
J

C EXIT I J

LOAD ACO
WITH STATE

PULL fiC2 OFF
STACK

STORE ACO
IN STATE

(RETURN)

Restore AC2

4-81

~M
PROGRAM LISTING

State Sequencer

1

2

3

4

5

6
7

8

9

10
11

12
13
14
1.5

16
17
18
19
20
21
22
23
24
25
26
27
88
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
4 5

46
47
48
49
50
51

52
5 3

54
55
56
57

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
000A
000B
000C

000D
000E
000F
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
001A
001B
001C
001D
001E
001F
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
002A
002B
002C
002D
002E
002F
0030

0031
0032
0033

0000
0002
6200
C902
E942
1A00
0004
1907
190C
190?-

1912
1917
191C
191F
1922

2402
4602
4323
1930
4225
192E
2404
4322
4623
192A
4319
2406
4621
1926
2404
4318
2406
4422
461F
1920
240C
431A
200A
4B1C
4611
191A
240C
4314
4415
1916
240C
4314
4411
1912
4301
1910

A
A
A
A
T
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

STATE TEST SEQUENCER
AC0 =

AC2 = 2

STATES: PUSH AC2
AC2* JMPTBL
AC2* STATE
0CAC2)

JMPTBL:

STATEl:

ST1A:

STATE2:

STATE3:

STATE4:

STATES:

5001 A
190F A
5002 A

STATE6:

STATE7:

STATES:

SETl:

SET2:

PUSH
LD
ADD
JMP
• WORD
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP

ROR
BOC
BOC
JMP
BOC
JMP
ROR
BOC
BOC
JMP
BOC
ROR
BOC
JMP
ROR
BOC
ROR
EOC
BOC
JMP
ROR
BOC
ROL
BOC
BOC
JMP
ROR
BOC
BOC
JMP
ROR
BOC
BOC
JMP
BOC
JMP

LI
JMP
LI

j save ac2 on stack
;load jump table address
;add state
j jump to a state routine
j jump table

STATEl
STATE2
STATE3
STATE4
STATES
STATE6
STATE7
STATE8

AC0* 1*0
6*ST1A
3*SET2
EXIT1
2*SET4
EXIT1
AC0*2*0
3*SET4
6* SETS
EXIT1
3*SET1
AC0*3*0
6*SET6
EXIT1
AC0*2*0
3*SET3
AC0*3*0
4*EXIT1
6* SETS
EXIT1
AC0* 6*0
3*SET7
AC0* 5*0
1 1 * EX I T

1

6*SET4
EXIT1
AC0*6*0
3* SET7
4* SETS
EXIT1
AC0* 6*0
3*EXIT1
4*SET8
EXIT1
3*SET1
EXIT1

AC0* 1

EXIT2
AC0*2

4-82

;MOVE INPUT 2 TO BIT
JBRANCH IF INPUT 4 = 1

; BRANCH IF INPUT 2 = 1

J DON'T CHANGE STATE
; BRANCH IF INPUT 1 =

; DON'T CHANGE STATE
JMOVE INPUT 3 TO BIT
; BRANCH IF INPUT 3 = 1

J BRANCH IF INPUT 5 » 1

J DON'T CHANGE STATE
; BRANCH IF INPUT = 1

JMOVE INPUT 6 TO BIT 2
** BRANCH IF INPUT 6 = 1

*• DON'T CHANGE STATE
JMOVE INPUT 3 TO BIT
J BRANCH IF INPUT 3 = 1

JMOVE INPUT 7 TO BIT 1

JEXIT IF INPUT 7 = 1

J BRANCH IF INPUT 8 = 1

J DON'T CHANGE STATE
JMOVE INPUT 7 TO BIT
J BRANCH IF INPUT 7 = 1

JMOVE INPUT 1 TO BIT 15
JEXIT IF INPUT 1 = 1

J BRANCH IF INPUT 4 = 1

J DON'T CHANGE STATE
JMOVE INPUT 7 TO BIT
J BRANCH IF INPUT 7 = 1

J BRANCH IF INPUT 8 « 1

J DON'T CHANGE STATE
JMOVE INPUT 7 TP BIT
JEXIT IF INPUT 7 = 1

J BRANCH IF INPUT 8 = 1

J DON'T CHANGE STATE
J BRANCH IF INPUT 1 = 1

J DON'T CHANGE STATE

J SET STATE = 1

J SET STATE = 2

to
PROGRAM LISTING (Continued)

State Sequencer

58 0034 190D
59 0035 5003
60 0036 190B
61 0037 5004
62 0038 1909
63 0039 5005
6A 003A 1907
65 003B 5006
66 003C 1905
67 003D 5007
68 003E 1903
69 003F 5008
70 0040 1901
71 0041 C103
7S 0042 6600
73 0043 D101
74 0044 8000
75 0045 0001
76 0000

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

SET3S

SET4:

SETS:

SET6:

SET7:

SETS:

EXITl:
EXIT2:

STATE:

JMP
LI
JMP
LI
JMP
LI
JMP
LI
JMP
LI
JMP
LI
JMP
LD
PULL
ST
RTS
.WORD
• END

EXIT2
AC0*3
EXIT2
AC0»4
EX I T2
AC0#5
EXITS
AC0#6
EXIT2
AC0#7
EXIT2
AC0#8
EXIT2
AC0* STATE
AC2
AC0* STATE

1

SET STATE = 3

SET STATE = 4

SET STATE = 5

:SET STATE = 6

:SET STATE = 7

:SET STATE = 8

I

ILOAD STATE INTO AC0
! RESTORE AC2 FROM STACK
J STORE AC0 IM STATE
! RETURN

4-83

~M Switch Bounce Detection

HARDWARE SUMMARY AND PROGRAM DESCRIPTION

SUMMARY

A switch-bounce-detect function can be implemented
with PACE using a combination of hardware (for entry

of the switch data) and an interrupt service routine (for

detection of switch bounce). The basic functions of the

hardware configuration are the generation of a Level 5
Interruput output to PACE each time that a switch

setting is changed, and the routing of the switch data

to PACE when the TRI-STATE® switch buffers are

addressed in the ensuing interrupt service routine.

Generation of the Level 5 Interrupt is accomplished by
WIRE-ORing the outputs of three 6-bit DM8136 com-
parators together to form an EXCLUSIVE-OR gate; this

gate continually compares the logic level present at each

T inputwith the logic level present at each corresponding

B input. Each time that a switch setting is changed, the

resultant change in logic level will be felt immediately at

the T input, but not at the B input until the RC network
charges to the new value. Thus, each change in switch

setting will cause the EXCLUSIVE-OR gate to generate a

low-level Interrupt 5 pulse that is equal in duration to

the charge time of the RC network. Since PACE timing

requirements may vary with system application, the values

for the RC networks are typically chosen to yield a Level

5 Interrupt pulse that is slightly greater than one clock

period in duration.

NOTE: For a detailed description of PACE interrupt

signal requirements, refer to the material that starts on
page 3-2.

Upon detection of the Level 5 Interrupt pulse, PACE
executes an interrupt service routine that reads-in the

switch data twice (at N ms intervals), then compares the
two inputs to determine whether a valid data input was
received the first time. If the two inputs are the same,
PACE stores the switch data in a memory location for

entry into the main program, then pulses the Flag 14
output to provide a "data accepted" indication via the

one-shot timer and display circuits. If the two inputs

are different, memory storage of the switch data and the

"data accepted" indication are inhibited.

Execution of Load (LD)-from-address-X'8XXX (address

bit 15 high) instructions, which clock the Bus Enable
flip-flop set at NADS (address strobe) time, reads-in the
switch data. While the Bus Enable flip-flop is set, the Q
and Q outputs enable the TRI-STATE switch buffers and
disable the memory and peripheral data buffers; this

applies the switch data to PACE over the data bus. The
instructions that follow the Load-from-address-X'8XXX
instructions then reference memory or peripheral ad-

dresses below X'8XXX (address bit 15 low) to clock the

Bus Enable flip-flop reset, and thereby reinstate normal
communications between PACE, memory, and periph-

erals. Similarly, the NINIT input to the Bus Enable
flip-flop ensures that the flip-flop will be reset when
power is first applied, to allow execution of the power-up
routine stored in memory.

ASSIGNMENTS

The flowchart and program listing provided for the

Switch Bounce Detect, Level 5 Interrupt service routine

assume that a memory location is dedicated to storage

of valid switch data, that ACO and AC1 are employed as

input-data and working registers for entry and comparison
of the initial and time-buffered switch data inputs, and
that a pulsed Flag 14 output is provided to the one-shot
time and display circuit for each valid switch-data entry.

FUNCTIONAL OPERATION

This program is written as a Level 5 Interrupt service

routine; it is executed each time that a Level 5 Interrupt

is detected following a change in switch setting. Since the

service routine requires the use of ACO and AC1 both as

input-data and working registers, the first step of the

routine is to save ACO and AC1 on the stack so that the
original contents can be restored at the end of the

routine. After ACO and AC1 are saved on the stack, a

load (LD) instruction is executed for initial entry of the
switch data into ACO. The switch data is then copied

into AC1, and the preselected delay interval stored in

memory-location MSECS is loaded in memory-location
CNTR via ACO. Following this, the contents of ACO are

set to 51 10 and decremented by one at a 19ms rate to

provide a 1 ms delay cycle. When the contents of ACO
equal zero, the delay value stored in CNTR is decre-

mented by one and the "delay cycle/decrement CNTR
sequence" is repeated until the contents of CNTR
equal zero.

Decrementing of ACO at a 19ms rate is accomplished via

an AISZ-1 instruction followed by a JMP -1 instruction.

While ACO is being decremented to zero, execution times
for the AISZ and JMP instructions are 10.5jus and 8.5ms
respectively. Upon detection of ACO = 0, the AISZ
instruction execution time increases to 12.5ms to provide

an automatic skip to the instruction following the JMP -1

instruction. Thus, a DSZ instruction (15.5ms or 1 7.5ms
for a CNTR > or = 0, respectively) is executed to

decrement the contents of CNTR by one. If the new
value in CNTR is not zero, the JMP LOOP instruction

(8.5ms execution time) following the DSZ instruction

causes the service routine to loop back to the instruction,

which sets AC1 = 51 10 thereby enabling another delay

cycle/decrement counter sequence.

When the contents of CNTR are subsequently decre-

mented to zero, the JMP LOOP instruction that follows

the DSZ instruction is skipped, and a Load (LD) ACO
switch instruction is executed to enter the time-buffered

switch data into ACO. The contents of AC1 (initial

switch data entry) and ACO are then EXCLUS VE-OR'ed
and the result istested for zero via a Branch-On-Condition
(BOC) instruction to determine whether the initial and
time-buffered switch data inputs are the same.

If the two inputs are the same, the contents of ACO will

be zero, flag 14 is pulsed, the new switch data input is

stored in memory-location STATUS. ACO and AC1 will

4-84

^
then be pulled from the stack to restore their original

contents. Level 5 Interrupts will be reenabled by first

resetting, then setting, the Level 5 Interrupt enable flag,

and a Return From Interrupt (RTI) instruction will be

executed to allow a return to the main program at the

point where it was interrupted.

Switch Bounce Detection

If the initial and time-buffered switch data entries are

different, the contents of ACO will not be zero, and the

BOC instruction will reference the EXIT branch to skip

over the Pulse Flag 14 and Save-AC1-in-Status instruc-

tions. Thus, the return to the main program will occur

with the previous switch data entry stored in STATUS.

TO MEMORY AND PERIPHERALS

-°<t|-°<l-

BUFFEREO
DATA I/O

BUS

HWV-* »ss

^ r-Wk-+V

' r*~ "55

r-^VIW-^V

I-VA-+ »ss

r-W*-* "ss

s r-Wv-H
[-W-+>

r-W*-+ vss

r*~ "ss

r-'w\<— «ss

r-+/Vr- V

HMr*l

^ r-VW—«
r-V*r-*V

pAMr-^V'ss

7474

RESET

-o<gj--»<(|-

DS36BI

SWITCH ADDRESS: DISABLE
'fr

BUFFERED
TIMING AND
CONTROL BUS

SWITCH ADDRESS ENABLE

IN 2

IN 3

IN 4

IN 5

IN 6

IN 7

S 1 DIS Z

0UT1

QUT2

OUT 3

0UT4
DM80LB5

OUTB

OUT 6

0UT7

OUT a

DIS 2

0UT1

0UT2

OUT 3

IN 4 OUT 4

DIUI80L9!;

IN 5 OUT 5

IN2

IN3

OUT 6

OUT 7

OUTB

r^hr^"

r^hr^
rih

1̂ '

r^Hr^
r)hr^
x)h^!

rihr*^1

.dht^I

r^hf^"

MEMORY AND
PERIPHERAL DATA

AND TIMING BUFFERS

s filEMORYAND
PERIPHERALS

r^[-rWrJ |

a

i

DM81 35

J OUTPUT

"1

DM8136

2
* OUTPUT

F11 -F14
NADS.
ODS, IDS

ONE-SHOT TIMER
AND "DATA ACCEPTED"

DISPLAY

i)

4-85

H
FLOWCHART

Switch Bounce Detection

(INTR 5
J

PUSH ACO AND
AC1 ONTO
STACK

Interrupt -5 service routine

Contents of ACO and AC1 on stack

LOAD SWITCH
STATUS INTO

ACO
First read of switch status

COPY ACO
TO AC!

LOAD mi DELAY
IN ACO

STDRE ACO
IN CNTR

LOAD ms
CONSTANT
INTO ACO

EXCLUSIVE OR
AC1.AC0

J

1 ms timing loop

Decrement ms count by 1

Is the count = 0?

Second read of switch status

Compare the first and second

readings of the switches

Were they the same?

C closed
J

4-86

^
FLOW CHART (Continued)

Switch Bounce Detection

c

(CLOSED)

STORE AC1

IN STATUS

PUUAC1.AC0
OFF STACK

RESET IE5

ENABLE IE5

f INTERRUPT \
V RETUHN J

Indicate switch closure

Save the switch status

Restore AC1 and AGO

Reset and enable interrupt 5

PROGRAM LISTING

1

2

3

4

5

6

7

8

9
10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

SWITCH

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
000A
000B
000C
000D
000E
000F
0010
0011
0012
0013
0014
0015
0016
0017
0018

0000
0001
0005
000E

6000
6100
Al 15
5D00
cm
D10F
5033
78 FF
19FE
AD0B
19FB
A10C
5840
4502
3E00
D507
6500
6400
3500
3580
7C00
0000
000A
0000
8000
0000

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AC0
AC1
IE5
FL14

INTR5i

DEBOUNCE

LOOP:

1

5
14

INTERRUPT
PUSH
PUSH

CLOSED:

EXIT:

CNTR:
MSECS:
STATUS:
SWITCH:

LD
RCPY
LD
ST
LI
AISZ
JMP
DSZ
JMP
LD
RXOR
BOC
PFLG
ST
PULL
PULL
PFLG
SFLG
RTI
.WORD
.WORD
.WORD
.WORD
• END

5 SERVICE
AC0
AC1
AC0.»@SWITCH
AC0*AC1
AC0*MSECS
AC0*CNTR
AC0*51
AC0#-1
.-1

CNTR
LOOP
AC0*@SWITCH
AC1*AC0
5»EXIT
FL14
AC 1> STATUS
AC1
AC0
IE5
IE5

10

08000

; INTERRUPT 5

;FLAG 14
ROUTINE
;SAVE REGISTERS ON STACK
*

j load switch status
jcopy ac0 to ac1
;load number of milisecs
jstore milisecs in cntr
;load milisec constant
; decrement ac0 by 1

;aci not zero
j decrement milisec count
j cntr not zero
jload switch status
; compare new to old
;exit if new not old
; indicate switch closure
isave the switch status
^restore registers

preset interrupt 5

i ENABLE INTERRUPT 5

; RETURN
; TIMER COUNTER
; NUMBER OF MILISECS DELA
J SWITCH STATUS SAVE
;ADDRESS OF SWITCHES

4-87

APPENDIX A - GLOSSARY

ACCUMULATOR: Specifically, a data storage device

(register) for work in progress; part of the equipment in

the arithmetic unit of a processor, in which arithmetical

and logical operations are performed (the ALU).

ADDRESS: A number that designates a register, a

memory location, or a device.

ADDRESS FIELD: That part of an instruction or word

containing an address or operand.

ASSEMBLER: A program that translates symbolic lan-

guage to machine language.

BINARY: Involving a choice or condition of two alter-

natives (yes/no; on/off); a number system using the

base 2.

BIT: Binary digit.

BUFFER: An area of memory that is used as a work

area or to store data for an input/output operation.

BUS: A circuit over which data or power is transmitted.

BYTE: A group of consecutive binary digits usually

operated upon as a unit.

CARRY: A condition occurring during addition when

the sum of two digits equals or exceeds the number

base; or, the digit to be added to the next higher column

as a result of the sum overflow.

CENTRAL PROCESSING UNIT (CPU): The portion of

any computer that consists of the arithmetic unit, the

control unit, and the storage unit.

CLOCK: A master timing device used to provide the

basic sequence pulses for the operation of a synchronous

computer.

COMPILER: A program that produces a machine-language

program from a source-language program.

COMPLEMENT: In the binary number system there are

two complements: the "ones complement," and the

"twos complement." The ones complement is obtained

by converting all ones to zeros, and all zeros to ones.

The twos complement may be obtained by first con-

verting a binary number to its ones-complement and

then adding one to the ones-complement. In binary logic,

signals may be in one of two possible states: true or

false, high or low, on or off. Thus, a signal is comple-

mented by changing it from one state to the other state.

CONDITIONAL BRANCH: A branch that occurs only

if a certain condition is present in the machine at the

time the instruction is executed.

CONSOLE: The portion of the processor that may be

used to control the machine manually, correct errors,

determine the status of registers, counters, and storage,

and manually revise the contents of storage.

CONTROL SECTION: The part of a processor that

determines the interpretation and execution of instruc-

tions in their proper sequence, including the decoding

of each instruction and the application of the proper

signals to the registers, arithmetic and logic units in

accordance with the decoded information.

DATA: A general term loosely used to denote any or all

facts, numbers, letters, and symbols that can be processed

or produced by a processor.

DEBUG: To isolate and remove malfunctions from a

computer or mistakes from a program; also, a utilities

program that helps correct application programs.

DIAGNOSTIC ROUTINE: A specific routine designed

to locate either a malfunction in the processor or a

mistake in coding.

EFFECTIVE ADDRESS: The addition of the contents

of the base register and displacement plus, in some cases,

the index register contents to form the address actually

used in addressing main memory.

ENABLE: Restoration of a suppressed interrupt.

EXECUTE: To carry out an instruction or perform

a routine.

FLAG: A bit used to indicate the status of an element.

FETCH: To retrieve a word of data from main memory.

FIRMWARE: Read-only memory (ROM), or the data or

instructions stored in ROM.

HALT: A machine instruction that stops the execution

of a program.

HEXADECIMAL: Related to a number system that uses

the base 1 6.

HARDWARE: The physical equipment of the processor.

INDEX REGISTER: A register that modifies the operand

address in an instruction or base address to yield a new

effective address.

INITIALIZE: A program or hardware circuit that clears

registers and sets counters and switches to their starting

values.

INSTRUCTION: A user-coded macroinstruction that

causes the microinstructions to perform certain

operations.

INTERRUPT: A break in the normal flow of a system

such that the flow can be resumed from that point at a

later time. An interrupt is usually caused by a signal

from an external source.

JUMP: An instruction or signal that, conditionally or

unconditionally, specifies the location of the next in-

struction and directs the processor to that instruction.

A-1

LABEL: An ordered set of characters used to symbolic-

ally identify an instruction, an address, or a value.

LIST: An ordered set of items.

MACHINE LANGUAGE: The system of (binary) codes

by which instructions and data are represented internally

within a data processing system.

MACROINSTRUCTION: In general, any single instruc-

tion that causes a complete sequence of events to occur;

a single instruction made up of a number of microinstruc-

tions that together perform a specific operation. A
microinstruction is carried out in one microcycle.

MAIN MEMORY: Read/write memory that is external

to the control ROM but is internal to the microprocessor.

MICROCYCLE:
microprocessor.

The basic machine cycle of the

MICROCODE: The steps or microinstructions of a

microprogram, or the binary coded data contained in

the microinstruction words of the control ROM.

MICROINSTRUCTION: See MACROINSTRUCTION.

MICROPROGRAM: A set of basic instructions (micro-

instructions) stored in read-only memory, programmable
read-only memory, or read/write memory, and used by
the control section of a processor to command registers,

arithmetic and logic units.

MICROPROGRAMMING: Machine-language coding in

which the coder builds his own machine instruction

from the primitive basic instructions built into the

hardware.

MNEMONICS: Operation codes written in easily-

remembered symbolic code rather than the actual

machine code.

OPERANDS: Any quantities entering or arising in an

operation. An operand may be an argument, a result,

a parameter, or an indication of the location of the

next instruction.

OVERFLOW: The condition that arises, in a digital

computer, when the result of an arithmetic operation

exceeds the capacity of the storage space allotted.

PROGRAM: A group of related routines that solve a

given problem.

PROGRAM COUNTER: A counter constructed in hard-

ware that contains the address of the next instruction

to be executed.

READ-ONLY MEMORY (ROM): A hardware (semi-

conductor) data storage device that may be programmed
similar to read/write memory but that cannot be erased

without destroying the device; the stored data may be

read, but not changed.

READ/WRITE MEMORY: A hardware (semiconductor)

data storage device in which the stored data may be read

as well as changed; common usage refers to R/W mem-
ories as random-access memories (RAMs).

REAL-TIME: The performance of a computation during

the actual time that the related physical process

transpires.

REGISTER: A hardware device used to store a computer
word, where the word is to be manipulated as either

data or an instruction.

ROUTINE: A set of coded instructions arranged in

proper sequence to direct the processor to perform a

desired operation or series of operations.

SIGN BIT: The bit position in a computer used to

designate the algebraic sign of the word.

SHIFT: To move an ordered set of bits one or more
places to the right or left.

SOFTWARE: The totality of programs and routines

used to extend the capabilities of computers (such as

compilers, assemblers, routines, and subroutines).

SOURCE LANGUAGE: The high-level (often mnemonic)
language in which you specify a program for the com-
puter. It is translated (by Assembler or Compiler
programs) to a machine-readable binary code.

STORAGE: Any device into which units of information

can be copied.

SUBROUTINE: A series of computer instructions that

performs a specific task for many other routines.

WORD: An ordered set of characters that occupies a

single storage location and is treated by the computer
circuits as a unit and transferred as such.

WRITE: To transfer information to a device.

A-2

APPENDIX B - POSITIVE POWERS OF TWO

n 2n n 2n

1 2 51 22517 99813 68524 8
2 4 52 45035 99627 37049 6
3 8 53 90071 99254 74099 2
4 16 54 18014 39850 94819 84
5 32 55 36028 79701 89639 68

6 64 56 72057 59403 79279 36
7 128 57 14411 51880 75855 872
8 256 58 28823 03761 51711 744
g 512 59 57646 07523 03423 488
10 1024 60 1 1529 21504 60684 6976

11 2048 61 23058 43009 21369 3952
12 4096 62 46116 86018 42738 7904
13 8192 63 92233 72036 85477 5808
14 16384 64 18446 74407 37095 51616
15 32768 65 36893 48814 74191 03232

16 65536 66 73786 97629 48382 06464
17 13107 2 67 14757 39525 89676 41292 8
18 26214 4 68 29514 79051 79352 82585 6
19 52428 8 69 59029 58103 58705 65171 2
20 10485 76 70 11805 91620 71741 13034 24

21 20971 52 71 23611 83241 43482 26068 48
22 41943 04 72 47223 66482 86964 52136 96
23 83886 08 73 94447 32965 73929 04273 92
24 16777 216 74 18889 46593 14785 80854 784
25 33554 432 75 37778 93186 29571 61709 568

26 67108 864 76 75557 86372 59143 23419 136
27 13421 7728 77 15111 57274 51828 64683 8272
28 26843 5456 78 30223 14549 03657 29367 6544
29 53687 0912 79 60446 29098 07314 58735 3088
30 10737 41824 80 12089 25819 61462 91747 06176

31 21474 83648 81 24178 51639 22925 83494 12352
32 42949 67296 82 48357 03278 45851 66988 24704
33 85899 34592 83 96714 06556 91703 33976 49408
34 17179 86918 4 84 19342 81311 38340 66795 29881 6
35 34359 73836 8 85 38685 62622 76681 33590 59763 2

36 68719 47673 6 86 77371 25245 53362 67181 19526 4
37 13743 89534 72 87 15474 25049 10672 53436 23905 28
38 27487 79069 44 88 30948 50098 21345 06872 47810 56
39 54975 58138 88 89 61897 00196 42690 13744 95621 12
40 10995 11627 776 90 12379 40039 28538 02748 99124 224

41 21990 23255 552 91 24758 80078 57076 05497 98248 448
42 43980 46511 104 92 49517 60157 14152 10995 96496 896
43 87960 93022 208 93 99035 20314 28304 21991 92993 792
44 17592 18604 4416 94 19807 04062 85660 84398 38598 7584
45 35184 37208 8832 95 39614 08125 71321 68796 77197 5168

46 70368 74417 7664 96 79228 16251 42643 37593 54395 0336
47 14073 74883 55328 97 15845 63250 28528 67518 70879 00672
48 28147 49767 10656 98 31691 26500 57057 35037 41758 01344
49 56294 99534 21312 99 63382 53001 14114 70074 83516 02688
50 11258 99906 84262 4 100 12676 50600 22822 94014 96703 20537 6

101 25353 01200 45645 88029 93406 41075 2

A-3

APPENDIX C -

o

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46
47

48

49

50

2-n

1.0

0.5

0.25

0.125

0.0625

0.03125

0.01562

0.00781

0.00390

0.00195

0.00097

0.00048

0.00024

0.00012

0.00006

0.00003

0.00001

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000
0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

-NEGATIVE POWERS OF TWO

5

25

625

3125
65625

82812 5

41406 25

20703 125

10351 5625

05175 78125

52587 89062 5

76293 94531 25

38146 97265 625

19073 48632 8125

09536 74316 40625

04768 37158 20312 5

02384 18579 10156 25

01192 09289 55078 125

00596 04644 77539 0625

00298 02322 38769 53125

00149 01161 19384 76562 5

00074 50580 59692 38281 25

00037 25290 29846 19140 625

00018 62645 14923 09570 3125

00009 31322 57461 54785 15625

00004 65661 28730 77392 57812 5

00002 32830 64365 38696 28906 25

00001 16415 32182 69348 14453 125

00000 58207 66091 34674 07226 5625

00000 29103 83045 67337 03613 28125

00000 14551 91522 83668 51806 64062 5

00000 07275 95761 41834 25903 32031 25

00000 03637 97880 70917 12951 66015 625

00000 01818 98940 35458 56475 83007 8125

00000 00909 49470 17729 28237 91503 90625

00000 00454 74735 08864 64118 95751 95312 5

00000
00000
00000

00000
00000
00000

00000
00000
00000

00227

00113
00056

00028
00014
00007

00003
00001

00000

37367

68683
84341

43170
21085
10542

55271

77635
88817

54432
77216
88608

94304
47152
73576

36788
68394
84197

32059 47875 97656 25

16029 73937 98828 125

08014 86968 99414 0625

04007 43484 49707 03125

02003 71742 24853 51562 5

01001 85871 12426 75781 25

00500 92935 56213 37890 625

00250 46467 78106 68945 3125

00125 23233 89053 34472 65625

A-4

APPENDIX D- THE HEXADECIMAL NUMBER SYSTEM

We have been taught from childhood to recognize and

manipulate a number system called decimal or base-10,

which uses ten symbols to represent values or numbers.

These symbols are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9.

Combinations of these form other numbers, and each

number or digit position is assigned a value equal to. its

position in the number sequence. For example, the

number 12,045:

POSITION NO. 4 3 2 10
12 4 5

L_ = 5 x 10° =

= 4 x 10} =

= Ox 10
2 =

= 2x 10^ =

= 1 x 10
4 =

5

40

000
2,000

10,000

12,045io

10 is the base-value of the number system, and 0, 1, 2, 3,

4 are the positions of weighted values.

Most computers use a base-2 numbering system in which
zeros and ones are the only symbols used to represent

any number. The least-significant bit would have a value

of 2®, the next bit would be 2 1
, then 2^, etc. Let's

use a group of five bits and assign bit as the least

significant bit.

BIT NO.
1

1

2 = 1

3

4 1

1x2"
0x2,!

1 y.2
2

0x23
1x24

1

4

16

2110

A computer that has 16 bit positions may represent

numbers with values from zero to 65,535.

Another consideration in computers is the representation

of both positive and negative values. In the "sign magni

tude" system, this may be accomplished by assigning

one of the bits in a group as a plus/minus indicator.

The normal method is to assign the most-significant bit

position to this task. If it is a logic zero, then the value

is positive; if it is a logic one, then the value is minus.

Assuming a group of eight bits maximum, and using the

eighth position as the sign, we may represent the follow-

ing numbers:

BIT NO.
1x2° 1

1 1 x2 1
2

2 1x2^ 4

3 = 1 x26 8

4 1x24 16

5 1x25 32

6
=

1x26
+

64
sign bit 7 +127 10

If bit 7 is equal to a 1, then the above number would be

negative: —127. Note that by using the most-significant

bit for the sign, the maximum number that may be

represented is only ±127. In a 16-bit computer this

number would be ±32,767.

Because it is difficult for us to convert visually many
ones and zeros to their represented value, other methods
of representing numbers have been implemented.

21 is the sum of the values of the bit positions.

It can also be seen that by using larger groups of bits,

larger numbers may be represented. An eight-bit com-
puter, which can handle eight bit positions in parallel,

can represent numbers from to 255iq-

BCD OR BINARY CODED DECIMAL:

BCD uses groups of four binary bits or positions, and

only uses those combinations that add up to 0, 1, 2, 3,

4, 5, 6, 7, 8, or 9. For example:

BIT NO.

1

2

3

4

5

6

7

All Bits Equal

0x2"
0x2'
0x2;
0x23

0x24

0x25

0x26

0x27

010

BIT 3 2 1

=

1 = 1

1 = 2

1 1 = 3

1 = 4

1 1 = 5

1 1 = 6

1 1 1 = 7

1 = 8

1 1 = 9

All Bits Equal 1

BIT NO.
1x2° 1

1 1 x2 1
2

2 1 x22 4

3 1 x23 8

4 1x24 16

5 1x25 32

6 1 x26 64

7 1 x27 128

The other binary combinations possible in the four bit

positions are not allowed in the BCD method:

255io

10 10]
10 11
110
110 1

Not Valid

1110
1 1 1 1 J

A-5

In an 8-bit computer, the decimal numbers 00 through

99 may be represented:

BIT POSITION 7 6 5 4

10 1

-1x2°
-Ox 2

1

Ox 22

-1 x23

BIT POSITION 3 2 10

10 1

II
1 x2u

Ox 2 1

"Ox 22

-1 x 23

1

=

8

9

Note that the binary weighting system repeats for each

four-bit group.

This is then compensated for by applying the decimal

(base-10) rules to the converted numbers:

9 9

I 9x 10" = 9

9x 10
1 = 90

99

(By having to weigh only up to four binary bits, you

quickly become efficient at converting binary numbers

to decimal form and decimal numbers to binary form.)

The maximum numbers that can be represented in an

8-bit machine is then only 99io in decimal versus 255-|o

in binary;

As you can see, the efficiency of a computer is restricted

because of the illegal combination in each four-bit group.

Another representation of binary numbers allows for all

combinations of the four-bit groups. This system is

called hexadecimal representation.

HEXADECIMAL (HEX) NOTATION

Hex uses a numbering system of base 16, and allows for

all combinations of the four-bit binary groups, as follows:

HEX
BIT POSITION: 3 2 1 BINARY

SYMBOL

1 1 1

1 2 2

1 1 3 3

1 4 4

1 1 5 5

1 1 6 6

1 1 1 7 7

1 8 8

1 1 9 9

1 1 10 A
1 1 1 11 B

1 1 12 C

1 1 1 13. D

1 1 1 14 E

1 1 1 1 15 F

The notations A through F are used to allow for a

single-character representation of the four-bit group

without duplication.

With hex we can now represent all 16 combinations of

binary weights possible in a group of four bit positions.

An eight bit computer can then represent the numbers

00 through FF, which is equivalent to binary through

255:

BIT POSITION 7 6 5 4

1111n 1x2"
-1 x2\
-1 x2;
-1 x23

15 = F

BIT POSITION 3 2 10

1

1111
1-1 x2u

-1 X2 1

-1 x22

-1 x22

2

4

_8
15= F

Applying the same rules as for decimal, but using the

base 16 instead of base 10:

F F

15 x 16°

15x 16

15

240

255

Thus, binary numbers, no matter what the number of

position, can easily be converted simply by dividing

them up into groups of four bits. For example, in a

16-bit computer:

Hex F E 9 A
A A A A

Binary 1111 1110 1001 1010

V V V V
Hex F E 9 A

Further, the use of hex symbols as an equivalent for

four binary bits requires fewer printed symbols, and

most computer documentation today uses the hexa-

decimal code representation.

POSITIVE AND NEGATIVE NUMBERS:

In hex or in binary, the method of representing positive

and negative numbers is the same. The most-significant

bit of the most-significant group is set to a zero for a

positive number or a one for a negative number.

If there are four groups of 4-bits each, as in a 16-bit

computer, we could have:

Hex 7 F F F

A A A A
111 1111 1111 1111Binary 0111

f
I sign bit

This number is equivalent to +32,767.

A-6

By making the most-significant-bit a logic 1, then the

number becomes:

F F F F

A A A A
1111 1111 1111 1111

1 Sid -i bit

significant bit of the most-significant group of bits—to

one, and the remaining bits to the desired absolute value.

Thus, -32,767 is represented as 1 1 1 1 1111 1111 1111.

Conversely, if the most-significant-bit is a zero the

number is positive; +32,767 is represented as 01 1 1 1111

1111 1111.

This number is equivalent to -32,767.

The method used to represent a negative hexadecimal

number depends on the type of numbering system chosen

for binary arithmetic processing. Most digital computers

use either the "sign magnitude" system or the twos-

complement system. In the sign magnitude system, a

negative value is formed by setting a sign bit—the most-

In the twos-complement system—the system used in

PACE—positive numbers are represented exactly as in

the sign magnitude system (sign bit is a logic zero);

but negative numbers are represented by the twos-

complement of the absolute value of the number.

Thus, -32,767 becomes, in the twos-complement system,

1000 0000 0000 0001. Appendix E shows how this

conversion is accomplished.

A-7

APPENDIX E - NEGATIVE HEXADECIMAL NUMBERS

The PACE microprocessor maintains negative numbers

in twos-complement form. To convert a number in

hexadecimal notation to its twos-complement equivalent,

subtract the number from hexadecimal 2 n , where "n"

is the number of binary bits in the computer word. For

a 16-bit word, "n" is 16, and 2n is 1 0000 0000 0000
0000 (binary) or 1 0000 (hex).

Thus, the negative of 1245ig ' s:

1 oooo
- 1 2 4 5

EDBB

A hexadecimal number will be negative in the PACE
CPU if the left-most digit is 8, 9, A, B, C, D, E, or F

(because all of these groupings start with a one). Thus,

the twos-complement of hex FACE is:

10000
-FACE
+ 0532

Perhaps an easier way to find the twos-complement of a

hexadecimal number is first to take the ones-complement

of the number; the ones-complement plus one is the

twos-complement. The ones-complement of a number is

its inverted form; simply exchange its ones for zeros,

and its zeros for ones. Thus,

hexadecimal binary equivalent ones-compilement

FACE + 1111 1010 1100 1110 -"-0000 0101 00110001

ones-complement +1

0000 0101 0011 0001

+1

0000 0101 0011 0010

Hex twos-complement of FACE

A-8

APPENDIX F - HEXADECIMAL AND DECIMAL INTEGER CONVERSION TABLE

8 7 6 5 4 3 2 1

HEX DECIMAL HEX DECIMAL HEX DECIMAL HEX DECIMAL HEX DECIMAL HEX DECIMAL HEX DECIMAL HEX DECIMAL

1 268 435 456 1 16 777 216 1 1 048 576 1 65 536 1 4 096 1 256 1 16 1 1

2 536 870 912 2 33 554 432 2 2 097 152 2 131 072 2 8 192 2 512 2 32 2 2

3 805 306 368 3 50 331 648 3 3 145 728 3 196 608 3 12 288 3 768 3 48 3 3

4 1 073 741 824 4 67 108 864 4 4 194 304 4 262 144 4 16 384 4 1 024 4 64 4 4

5 1342 177 280 5 83 886 080 5 5 242 880 5 327 680 5 20 480 5 1 280 5 80 5 5

6 1610 612 736 6 100 663 296 6 6 291 456 6 393 216 6 24 576 6 1 536 6 96 6 6

7 1 879 048 192 7 117 440 512 7 7 340 032 7 458 752 7 28 672 7 1792 7 112 7 7

8 2 147 483 648 8 134 217,728 8 8 388 608 8 524 288 8 32 768 8 2 048 8 128 8 8

9 2 415 919 104 9 150 994 944 9 9 437 184 9 589 824 9 36 864 9 2 304 9 144 9 9

A 2 684 364 560 A 167 772 160 A 10 485 760 A 655 360 A 40 960 A 2 560 A 160 A 10

B 2 952 790 016 B 184 549 376 B 11 534 336 B 720 896 B 45 056 B 2 816 B 176 B 11

C 3 221225 472 C 201 326 592 C 12 582 912 C 786 432 C 49 152 C 3 072 C 192 C 12

D 3 489 660 928 D 218 103 808 D 13 631 488 D 851 968 D 53 248 D 3 328 D 208 D 13

E 3 758 096 384 E 234 881 024 E 14 680 064 E 917 504 E 57 344 E 3 584 E 224 E 14

F 4 026 531 840 F 251 658 240 F 15 728 640 F 983 040 F 61440 F 3 840 F 240 F 15

8 7 6 5 4 3 2 1

TO CONVERT HEXADECIMAL TO DECIMAL

1. Locate the column of decimal numbers corresponding

to the left-most digit or letter of the hexadecimal;

select from this column and record the number that

corresponds to the position of the hexadecimal digit

or letter.

2. Repeat step 1 for the next (second from the left)

position.

3. Repeat step 1 for the units (third from the left)

position.

4. Add the numbers selected from the table to form

the decimal number.

TO CONVERT DECIMAL TO HEXADECIMAL

1. (a) Select from the table the highest decimal number
that is equal to or less than the number to be

converted.

(b) Record the hexadecimal of the column con-

taining the selected number.

(c) Subtract the selected decimal from the number
to be converted.

2. Using the remainder from step 1(c) repeat all of step

1 to develop the second position of the hexadecimal

(and a remainder).

3. Using the remainder from step 2 repeat all of step 1

to develop the units position of the hexadecimal.

4. Combine terms to form the hexadecimal number.

To convert integer numbers greater than the capacity of table, use the techniques below:

HEXADECIMAL TO DECIMAL

Successive cumulative multiplication from left to right,

adding units position.

Example: D34i6 = 3380io

D =

3380

EXAMPLE

Conversion of Hexadecimal

Value D34

D 3328

3 48

4 4

Decimal 3380

DECIMAL TO HEXADECIMAL

Divide and collect the remainder in reverse order.

Example: 3380-|0 = D34i6

16 I 3380

^

16 |211

16 | 13

remai

4 '

nder

i
EXAMPLE

Conversion of Decimal
3 Value 3380

D D -3328

52

3 -48

4

4 -4

Hexadecimal D34

A-9

APPENDIX G- HEXADECIMAL AND DECIMAL FRACTION CONVERSION TABLE

1 2 3 4

HEX DECIMAL HEX DECIMAL HEX DECIMAL HEX DECIMAL EQUIVALENT

.0 .0000 .00 .0000 0000 .000 .0000 0000 0000 .0000 .0000 0000 0000 0000

.1 .0625 .01 .0039 0625 .001 .0002 4414 0625 .0001 .0000 1525 8789 0625

.2 .1250 .02 .0078 1250 .002 .0004 8828 1250 .0002 .0000 3051 7578 1250

.3 .1875 .03 .0117 1875 .003 .0007 3242 1875 .0003 .0000 4577 6367 1875

.4 .2500 .04 .0156 2500 .004 .0009 7656 2500 .0004 .0000 6103 5156 2500

.5 .3125 .05 .0195 3125 .005 .0012 2070 3125 .0005 .0000 7629 3945 3125

.6 .3750 .06 .0234 3750 .006 .0014 6484 3750 .0006 .0000 9155 2734 3750

.7 .4375 .07 .0273 4375 .007 .0017 0898 4375 .0007 .0001 0681 1523 4375

.8 .5000 .08 .0312 5000 .008 .0019 5312 5000 .0008 .0001 2207 0312 5000

.9 .5625 .09 .0351 5625 .009 .0021 9726 5625 .0009 .0001 3732 9101 5625

.A .6250 .0A .0390 6250 .00A .0024 4140 6250 .000A .0001 5258 7890 6250

.B .6875 .OB .0429 6875 .OOB .0026 8554 6875 .OOOB .0001 6784 6679 6875

.C .7500 .OC .0468 7500 .OOC .0029 2968 7500 .OOOC .0001 8310 5468 7500

.D .8125 .OD .0507 8125 .OOD .0031 7382 8125 .OOOD .0001 9836 4257 8125

.E .8750 .OE .0546 8750 .OOE .0034 1796 8750 .OOOE .0002 1362 3046 8750

.F .9375 .OF .0585 9375 .OOF .0036 6210 9375 .OOOF .0002 2888 1835 9375

1 2 3 4

TO CONVERT .ABC HEXADECIMAL TO DECIMAL

Find .A in position 1 .6250

Find .OB in position 2 .0429 6875

Find .OOC in position 3 .0029 2968 7500

.ABC Hex is equal to .6708 9843 7500

A-10

APPENDIX H - INTEGER CONVERSION TABLE

POWERS OF 16

Example: 268,435,456io = (2.68435456 x 10
8
ho = 1000 OOOO16 = (10

7
)i6

16" n

1

16 1

256 2

4 096 3

65 536 4

1 048 576 5

16 777 216 6

268 435 456 7

4 294 967 296 8

68 719 476 736 9

1 099 511 627 776 10 = A

17 592 186 044 416 11 = B

281 474 976 710 656 12 = C

4 503 599 627 370 496 13 = D

72 057 594 037 927 936 14=E

1 152 921 504 606 846 976 15= F

Decimal Values

A-11

riD nrrnc luncv r\c imctdi i^Timip

ALPHANUMERIC SEQUENCE BY HEXADECIMAL
Read down then right.

Mnemonic
Assembler Code AC0 AC1 AC2 AC3

BASE
PAGE
(XX)

PC
REL
(XX+PCt

AC2
REL
(XX+AC2)

AC3
REL
(XX-IAC3)

HALT 0000

CFR r 0400 0500 0600 0700

CRF r 0800 0900 OAOO 0B00

PUSHF OCOO

PULLF 1000

JSR disp(xr) 14XX 15XX 16XX 17XX

JMP disp(xr) 18XX 19XX 1AXX 1BXX
XCHRS r 1C00 1D00 1E00 1F00

ROL r,n,l 20XX 21XX 22XX 23XX

ROR r,n,l 24XX 25XX 26XX 27XX

SHL r,n,l 28XX 29XX 2AXX 2BXX

SHR r,n,l 2CXX 2DXX 2EXX 2FXX

fc
NOT
USED IE1 IE2 IE3 IE4 IE5 OVF CRY LINK IEN BYTE F11 F12 F13 F14

NOT
USED

PFLG fc 3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 3A00 3B00 3C00 3D00 3E00 3F00

SFLG fc 3080 3180 3280 3380 3480 3580 3680 3780 3880 3980 3A80 3B80 3C80 3D80 3E80 3F80

cc

STACK
Full

ACO
=

ACO
Bitl5=0

ACO
BitO=1

ACO
Bit1 = l

ACO
^0

ACO
Bit2=1 CQNT LINK IEN CRY

ACO
Bit 15=0 OVF JC13 JC14 JC15

BOC cc.disp 40XX 41 XX 42XX 43XX 44XX 45XX 46XX 47XX 48XX 49XX 4AXX 4BXX 4CXX 4DXX 4EXX 4FXX

ACO AC1 AC2 AC3

LI r, disp 50XX 51 XX 52XX 53XX

sr

dr

ACO
ACO

AC1
ACO

AC2
ACO

AC3
ACO

ACO
AC1

AC1
AC1

AC2
AC1

AC3
AC1

ACO
AC2

AC1
AC2

AC2
AC2

AC3
AC2

ACO
AC3

AC1
AC3

AC2
AC3

AC3
AC3

RAND sr.dr
,

5400 5440 5480 54C0 5500 5540 5580 55C0 5600 5640 5680 56C0 5700 5740 6780 57C0

RXOR sr.dr 5800 5840 5880 58C0 5900 5940 5980 59C0 5A00 5A40 5A80 5AC0 5B00 5B40 5B80 5BC0

RCPY sr,dr 5C00 5C40 5C80 5CC0 5D00 5D40 5D80 5DC0 5E00 5E40 5E80 5EC0 5F00 5F40 5F80 5FC0

ACO AC1 AC2 AC3

PUSH r 6000 6100 6200 6300

PULL r 6400 6500 6600 6700

sr

dr

ACO
ACO

AC1
ACO

AC2
ACO

AC3
ACO

ACO
AC1

AC1
AC1

AC2
AC1

AC3
AC1

ACO
AC2

AC1

AC2
AC2
AC2

AC3
AC2

ACO
AC3

AC1
AC3

AC2
AC3

AC3
AC3

RADD sr.dr 6800 6840 6880 68C0 6900 6940 6980 69C0 6A00 6A40 6A80 6AC0 6B00 6B40 6B80 6BC0

RXCH sr.dr 6C00 6C40 6C80 6CC0 6D00 6D40 6D80 6OC0 6E00 6E40 6E80 6EC0 6F00 6F40 6F80 6FC0

ACO AC1 AC2 AC3

CAI r, disp 70XX 71XX 72XX 73XX

sr

dr

ACO
ACO

AC1

ACO
AC2
ACO

AC3
ACO

ACO
AC1

AC1
AC1

AC2
AC1

AC3
AC1

ACO
AC2

AC1
AC2

AC2
AC2

AC3
AC2

ACO
AC3

AC1
AC3

AC2
AC3

AC3
AC3

RADC sr.dr 7400 7440 7480 74C0 7500 7540 7580 75C0 7600 7640 7680 76C0 7700 7740 7780 77C0

Halt

Copy flags to register

Copy register to flags

Push flags onto stack

Pull stack into flags

Jump to subroutine; XX = ±127; push PC onto stack

Jump; XX = ±127

Exchange register and stack

Rotate register left
]

Rotate register right I Bit 1 = 1 include link bit

Shift left t Bit 2 = 2 shift count

Shift right j Bits 2-7 = N = shift count

Pulse or reset flag

Set flag

Branch on condition (PC relative) XX = ±127

Load immediate; load register with XX; XX = data

Bit 7 of XX extends to Bits 8-15 of register

"AND" register to register; result to register (dr)

Exclusive "0 R" register to register; result to register (dr)

Copy register to register

Push register onto stack

Pull stack into stack

Add register to register; result to register (dr), overflow, and carry

Exchange register

Complement register and add XX; result to register

Bit 7 of XX is extended to Bits 8-15

Add register to register plus carry; result to register (dr);

overflow and carry

APPENDIX 1 (Continued) OP CODE INDEX OF INSTRUCTIONS

ALPHANUMERIC SEQUENCE BY HEXADECIMAL
Read down then right.

Add XX to register; skip next instruction if result = zero; XX = ±127

Return from interrupt; add XX to top of stack and place result in PC; XX = ±1 27; set IEN flag

Return from subroutine; add XX to top sf stack and place result in PC; XX = ±1 27

Decimal add register ACO to contents of effective address; result to AC0, overflow and carry; address = (XX + register shown); XX = ±127

Increment contents of effective address by 1; skip next instruction if result = 0; result is in EA; use address mode shown; XX = ±127

Subtract contents of effective address from ACO; result to ACO; use address mode shown; XX ±127

Jump to subroutine indirect; push PC onto stack; final address • to contents of location (XX + register shown); XX = ±127

Jump indirect; final address = to contents of location (XX + register shown); XX = ±127

Compare ACO with contents of location (XX + register shown); XX = ±1 27; skip next instruction if ACO > (EA)

Load indirect; load ACO with contents of final address; address - contents of location (XX + register shown); XX = ±127

OR ACO with contents of location (XX + register shown); XX = ±127; result to ACO

AND ACO with contents of location (XX + register shown); XX = ±127; result to ACO

Decrement contents of effective address by 1; skip next instruction if result = 0; result is in EA; address = (XX + register shown); XX - ±127

Store indirect; store ACO into final address; address = contents of location (XX + register shown); XX = ±1 27

AND ACO with content? of location IXX + register shown): skip next instruction if result » 0; XX = ±1 27

Load ACO with sign extended; Bit 7 of location (XX + register shown) is extended toACO 8-15; Bits 0-7 are loaded to ACO Bits 0-7; XX = ±127

Load ACO with contents of location (XX + register shown); XX = ±127

Load AC1 with contents of location (XX + register shown); XX = ±127

Load AC2 with contents of location (XX + register shown); XX - ±127

Load AC3 with contents of location (XX + register shown); XX = ±127

Store ACO to location (XX + register shown); XX = ±127

Store AC1 to location (XX + register shown); XX = ±127

Store AC2 to location (XX + register shown); XX = ±127

Store AC3 to location (XX + register shown); XX = ±127

Add ACO to location (XX + register shown); XX = ±127; result to ACO

Add AC1 to location (XX + register shown); XX = +127; result to AC1

Add AC2 to location (XX + register shown); XX = ±127; result to AC2

Add AC3 to location (XX + register shown); XX = ±127; result to AC3

Compare ACO to location (XX + register shown); XX = ±127; if not equal skip next instruction

Compare AC1 to location (XX + register shown); XX = ±127; if not equal skip next instruction

Compare AC2 to location (XX + register shown); XX - ±127; if not equal skip next instruction

Compare AC3 to location (XX + register shown); XX = ±127; if not equal skip next instruction

Mnemonic

Assembler Code AC0 AC1 AC2 AC3

BASr
PAGE
XX

PC
REL
(xx+po

AC2
REL
(XX+AC2)

AC3
REL
(XX+AC3)

AIS2 r, disp 78XX 79XX 7AXX 78XX

RTI disp 7CXX

RTS disp 80XX

DECA 0, disp(xr) 88XX 89 XX 8AXX 8BXX

ISZ disp(xr) 8CXX 8DXX 8EXX 8FXX

SUBB 0, disp(xr) 90XX 91 XX 92XX 93XX

JSR @ disp(xr) 94XX 95XX 96XX 97XX

JMP @> disp(xr) 98XX 99XX 9AXX 9BXX

SKG 0, disp(xr) 9CXX 9DXX 9EXX 9FXX

LD 0,@disp!xr) A0XX A1XX A2XX A3XX

OR 0, disp(xr) A4XX A5XX ABXX A7XX

AND n.disp(xr) A8XX A9XX AAXX ABXX

DSZ disp(xr) ACXX ADXX AEXX AFXX

ST 0, @ disp(xr) B0XX B1XX B2XX B3XX

SKAZ 0, disp(xr) B8XX B9XX BAXX BBXX

LSEX 0, disp(xr) BCXX BDXX BEXX BFXX.

LD r, disp(xr) COXX C1XX C2XX C3XX

C4XX C5XX C6XX C7XXx^ C8XX C9XX CAXX CBXXX CCXX CDXX CEXX CFXX

ST r, disp(xr) X DOXX D1XX D2XX 03XXX 04XX D5XX 06XX D7XXX D8XX D9XX DAXX OBXX
OCXX DDXX DEXX DFXX

ADD r, disp(xr) X EOXX E1XX E2XX E3XXX E4XX E5XX E6XX E7XXX E8XX E9XX EAXX EBXXX ECXX EDXX EEXX EFXX

SKNE r, disp(xr) X FOXX F1XX F2XX F3XXX F4XX F5XX F6XX F7XXX F8XX
j
F9XX FAXX FBXX

1 X FCXX j FOXX FEXX FFXX

